176 - 200 of 585
Number of results to display per page
TitleDateSubjectDescription
176 Lawrence Livermore National Laboratory oil shale project (Jul 1986)1986-07enthalpy relations; oil shale; chemical reaction modeling; generic pyrolysis modeling; heat capacities for oil shaleI. Enthalpy Relations for Oil Shale. II. Chemical Reaction Modeling. III. Generic Pyrolysis Modeling.
177 Lawrence Livermore National Laboratory oil shale project (Nov 1983)1983-11oil shale; pyrolysis on sulfer gases; nitric oxide formation; sulfur gas productionI. Effect of Pyrolysis Conditions on Sulfur Gases. II. Nitric Oxide Formation During Combustion. III Process Modeling.
178 Lawrence Livermore National Laboratory oil shale (May 1989)1989-05isothermal pyrolisis kinetics; dust; oil shale; oil generation; micropyrolysisI. Isothermal Pyrolysis Kinetics. II. Dust.
179 Lawrence Livermore National Laboratory oil shale project (May 1985)1985-05oil shale; inorganic nitrogen; retort modelingI. Determination of Inorganic Nitrogen in Shale II. Retort Modeling III. Reduced Volume Sampling System Installed on Triple Quadruple Mass Spectrometer IV. Visitors V. Publications
180 Lawrence Livermore National Laboratory oil shale project review: METC third annual oil shale contractors meeting1988-07-20Lawrence Livermore National Laboratory; oil shale retorting alternatives; oil shale process development; oil shaleThe Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of...
181 Ion chromatographic analysis of oil shale leachates1990-10-01ion chromatography; oil shale leachates; anionsIon chromatography can be used for the rapid separation and determination of ions in aqueous solutions that would otherwise require a plethora of classical wet chemical techniques. Ion chromatography is finding increasing use in environmental analysis as well as the petroleum and fossil fuel industr...
182 Lands with wilderness characteristics, Resource Management Plan constraints, and land exchanges: Cross-jurisdictional management and impacts on unconventional fuel development in Utah's Uinta Basin2012-03Utah oil shale; oil sands; unconventional fuel resources; land exchanges; land rightsUtah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource acce...
183 Conjunctive surface and groundwater management in Utah: Implications for oil shale and oil sands development2011-12-31Unconventional fuel development; Conjunctive water use; Surface water; Groundwater; Utah; Utah water law; Oil shale; Oil sandsUnconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive...
184 Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah2011-04Utah; Green River Formation; Lake Uinta; Mahogany zone; Lake evolution; Oil shale development; Uinta BasinAn integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases 1) a freshwater rising lake phase below the Mahogany zone, 2) an anoxic deep lake phase above the base of the Mahogany zone and 3) a hypersali...
185 Gasification studies - Task 4 topical report, Utah Clean Coal Program, Reporting period October 2009 - July 20112011-10Gasification; pressurized entrained-flow coal gasifiers; coalA key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3...
186 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: April 2011 to June 20112011-07-01ICSE; Oil shale; Oil sands; University of Utah; Uinta Basin; Vernal, Utah; CLEARuff model; Oxy-gas burner; Bitumen; Kerogen; X-ray fluorescence analysis; Thermogravimetric analysis; CHNS analysis; Lattice Boltzmann model; American Shale Oil; AMSOThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program sponsored the University of Utah Unconventional Fuels...
187 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: January 2012 to March 20122012-04ICSE; University of Utah; Green River Basin; CO2 capture; Oil sands; Crude oil refining; International Flame Research Foundation; IFRF; Oil shale; Pyrolysis; Thermogravimetric analysis; TGA; TEA-C burner; Uinta Basin; Flameless oxy-gas process heaters; Efficient CO2 capture; Liquid Fuel Production ...The Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In outreach efforts, ICSE participated in a session on oil sands at the Utah Governor's Annual Energy Deve...
188 Clean and secure energy from coal - Phase 3 statement of project objectives2011-07-01ICSE; University of Utah; CO2 capture; Oxy-coal combustion; Domestic coal resources; Stationary power generation; Clean coal utilization; Chemical looping combustion; CLC; High-pressure entrained-flow coal gasification; IGCC; SNG; NGCC; CNGThe University of Utah (the Recipient), via their Institute for Clean and Secure Energy (ICSE), shall pursue research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is orga...
189 General kinetic model of oil shale pyrolysis1984-12oil shale; oil shale pyrolysis; pyrolysisA mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking...
190 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: October 2012 to December 20122013-01ICSE; Oil shale; oil sands; CO2 management; Uinta Basin; Liquid fuel production; In-situ thermal processing; White River oil shale; Green River Formation; American Shale Oil; AMSO; X-ray flourescence; Pyrolysis; Demineralized kerogenThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program, part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah, is focused on engineering, scientific, and legal research surrounding the development of these resources in ...
191 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: April 2012 to June 20122012-07ICSE; University of Utah; AMSO; American Shale Oil; Strategic Alliance Reserve; SAR; Utah Division of Oil, Gas, and Mining; DOGM; Large eddy simulation; LES; International Flame Research Foundation; IFRF; Flamelet; Pyrolysis; Kerogen; Thermogravimetric analysis; TGA; CO2 enhanced oil recovery; EOR; ...The Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, ICSE presented the 2012 University of Utah Unconventional Fuels Conference and met with r...
192 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: October 2011 to December 20112012-01ICSE; University of Utah; AMSO; American Shale Oil; Strategic Alliance Reserve; SAR; Utah Division of Oil, Gas, and Mining; DOGM; Large eddy simulation; LES; International Flame Research Foundation; IFRF; Flamelet; Pyrolysis; Kerogen; Thermogravimetric analysis; TGA; CO2 enhanced oil recovery; EORThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. The Clean and Secure Energy program hosted an External Advisory Board on November 1-2, 2011 and the kickof...
193 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: July 2012 to September 20122012-10ICSE; Kerogen liquefaction; Oil shale thermal treatment; Trondheim, Norway; Statoil; Uinta Basin; Greenhouse gases; Well drilling; White River oil shale samples; Demineralized kerogen pyrolysis; Oil shale; Char; American Shale Oil; AMSO; Genie Energy; TOTALThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In its outreach efforts this quarter, ICSE finalized materials for a short course on kerogen liquefaction ...
194 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: October 2010 to December 20102011-01ICSE; Oil shale; Oil sands; University of Utah; Marriott Library; Macroscale CO2 analysis; CO2 capture; Flameless oxy-gas process heaters; Liquid fuel production; In-situ thermal processingThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program circulated External Advisory Board recommendations an...
195 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: January 1, 2010 to March 31, 20102010-05-13ICSE; University of Utah; CO2 capture; Mahogany zone; Green River Formation; Utah; Uinta Basin; Oil sands; Crude oil refining; International Flame Research Foundation; Liquid fuel production; In-situ thermal treatment; Oil shale; PyrolysisThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program continued its focus on enhancing industrial, national...
196 Attachment 2 - Statement of program objectives clean and secure energy from domestic oil shale and oil sands resources2011-12ICSE; Oil shale research; Energy; Oil sands resources; Domestic oil shale; Environmental impact; Basin scale simulation; Liquid fuel production; In-situ thermal processing; Environmental; Legal; Policy issues; University of UtahThis Statement of Project Objectives (SOPO) reflects the performance period from October 1, 2010 through September 30, 2013. It includes tasks/subtasks funded in fiscal year 2009 (Phase 1) and tasks/subtasks funded in fiscal year 2010 (Phase II). Tasks/subtasks initiated during Phase I that are anti...
197 Clean and secure energy from coal, oil shale, and oil sands: Quarterly progress report: July 1, 2009 to September 30, 20092009-10-30ICSE; Electric power generation; Liquid transportation fuels; Coal; Oil sands; Oil shale; Clean Coal Program; the Oil Shale and Sands Program; OSSP; the Policy Environment, and Economics Program; PEEP; CO2 capture; Sequestration; Oxy-coal combustion; Coal analysis; Ash partitioningThe University of Utah Clean and Secure Energy (CASE) project is pursuing interdisciplinary, cradle-to-grave research and development of energy for electric power generation and for liquid transportation fuels from the abundant domestic resources of coal, oil sands, and oil shale. Its work is divide...
198 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: July 2011 to September 20112011-09ICSE; University of Utah; Uinta Basin; Oil and gas production; Utah Division of Oil, Gas, and Mining; NOx emissions; American Shale Oil; AMSO; Flameless oxy-gas process heaters; Efficient CO2 captureThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program cosponsored the 2011 Energy Forum, which was held in ...
199 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: January 2011 to March 20112011-04-01ICSE; Oil shale; Oil sands; University of Utah; Utah; Oxy-gas; Kerogen; X-ray fluorescence analysis; Thermogravimetric analyzer; TGA; Lattice Boltzmann simulation; Flameless oxy-gas process heaters; CO2 capture; American Shale Oil; AMSO; Greenhouse gas emissions; GHGThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program held a Project Review meeting on the University of Ut...
200 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: July 2010 to September 20102010-10ICSE; Oil shale; Oil sands; University of Utah; Marriott Library; Macroscale CO2 analysis; CO2 capture; Flameless oxy-gas process heaters; Liquid fuel production; In-situ thermal processingThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program was involved in multiple technology transfer and outr...
176 - 200 of 585