101 - 125 of 1,519
Number of results to display per page
TitleDateSubjectDescription
101 Carbon dioxide sequestration: Effect of the presence of sulfur dioxide on the mineralogical reactions and on the injectivity of CO2+SO2 mixtures2010-01Carbon dioxide sequestration; CO2; Sequestration stream; Gas injection; CO2+SO2 mixture; Brine; Arkose; Calcite; Anhydrite; Calcium carbonate; CaCO3; Ankerite; Absolute permeabilities; Free-gas; Dissolved gas distribution; Saline formation; Contaminant gases; sulfur dioxide; SO2; Hydrogen sulfide; H...This report presents experimental and modeling data on certain aspects of carbon dioxide (CO2) sequestration. As different processes are developed and implemented to facilitate the capture of CO2, other contaminant gases (sulfur dioxide, hydrogen sulfide and ammonia) may be present in the sequestrat...
102 Catalytic and thermal effects in the upgrading of bitumen-derived heavy oils (Abstract only)1985Heavy oils derived from PR Spring bitumen were hydrotreated in the fixed bed reactor as a function of process variables. The presulfided commercial NiMo/y-alumina (HDN) catalyst, Mo supported on y-alumina (HDM) catalyst and sodium-impregnated HDN catalyst support were used in this study to investiga...
103 Catalytic upgrading of Asphalt Ridge bitumen over hydrodenitrogenation catalysts (Abstract only)1997The bitumen extracted from Asphalt Ridge oil sands was hydrotreated over three sulfided NiMo/y-Alumina hydrodenitrogenation catalysts in a fixed bed reactor to study the extent of upgrading as a function of process variables and catalyst. The process variables investigated were temperature (619-685 ...
104 Catalytic upgrading of a Uinta Basin bitumen over a commercial HDM catalyst1994catalytic upgrading; Uinta Basin bitumen; commercial HDM catalystUinta Basin bitumen was hydrotreated over a sulfidcd commercial Ni-Mo on alumina hydrodemetallation catalyst. The catalyst was on-stream continuously for over 1.000 hours. The extent of heteroatoni removal, residuum conversion and molecular weight reduction were investigated as a function of process...
105 Characterization and beneficiation of bitumen-free domestic tar sands1982-09The Federal Bureau of Mines conducted a study to determine if residues from fractional distillation represent a potential source of mineral values. Aliterature review and discussions with tar sand specialists failed to disclose the mineralogical nature of residues remaining after bitumen extraction....
106 Characterization of DOE reference oil shale: Tipton Member, Green River Formation oil shale from Wyoming1988-08Measurements have been made of the chemical and physical properties of a Tipton Member Green River Formation oil shale from Wyoming. This shale has been designated as a western reference shale by the Department of Energy. Material balance Fischer assays, carbon aromaticities, thermal properties, and...
107 Characterization of Pyrolysis Products from a Utah Green River Oil Shale by 13C NMR, GC/MS, and FTIR2013-10-14Pyrolysis; Utah; Green River; Oil Shale; GC/MS; FTIR; 33rd Oil Shale Symposium; Kerogen; Oil shale kerogen; 13C; NMR; TGA
108 Characterization of Uinta Basin oil sand bitumens1992-11-15Uinta Basin; Oil sand bitumens; Southwest Whiterocks; Northwest Whiterocks; Asphalt Ledge; Sunnyside; Solvent extraction; Elution chromatography; Saturate and monoaromatic fractions; Polycyclic naphthenes; Naphthenoaromatics; Steranes; HopanesResults of the analyses of the saturate and monoaromatic fractions of four Uinta Basin bitumens (southwest Whiterocks, northwest Whiterocks, Asphalt ledge and Sunnyside) are presented in this paper. After separating the bitumen samples into several fractions using solvent extraction and elution chro...
109 Characterization of macromolecular structure elements from a Green River oil shale2013-10-14Macromolecular Structure; Green River; Oil Shale; 33rd Oil Shale Symposium; Golden, Colorado; Kerogen; Shale; Green River oil shale; BitumenThis work is based upon work supported by the Department of Energy under Award Number DENT0005015. The views and opinions expressed herein do not necessarily state or reflect thoseof the United States Government or any agency thereof.
110 Characterization of nickel and vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection1988-02Previously, we have examined the Ni and V in heavy crude oils, residua, and processed products by several metal speciation techniques to ascertain molecular structure and processing behavior. Two classes 01 metal compounds were found -- metallopetroporphyrins and metallo-nonporphyrins - each having ...
111 Characterization of particulate emissions: Size fractionation and chemical speciation2003-12Particulate emissions; Size fractionation; Chemical speciation; DoD emission sources; Aircraft ground support vehicles; Rocket motors; Aircraft; Sandblasting operations; Aerosol time-of-flight mass spectrometer; ATOFMS; Photoelectric aerosol sensor; PAS; Polycyclic aromatic hydrocarbons; PAH; Photoa...This study developed and validated innovative techniques for characterizing the amount and composition of PM10, PM2.5, and smaller particles for four major classes of DoD emission sources: aircraft ground support vehicles, rocket motors, aircraft, and sandblasting operations. The techniques include ...
112 Chemical kinetics and oil shale process design1993-07Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reac...
113 Chemical looping combustion hierarchy2009-11-04Chemical looping combustion; CLC; hierarchical chart; CLC integration; ISCE; Research area; SubtasksHierarchical chart for the chemical looping combustion (CLC) research area hierarchical chart showing connectivity between subtasks. This chart helps illustrate CLC integration and focus and also serves as a management tool for the various subtasks. Subtasks in brown and orange are currently funded ...
114 Chemical looping combustion kinetics2009-12-01chemical looping; combustion kinetics; CO2 capture; coal-fired power plants; CLCOne of the most promising methods of capturing CO2 emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and...
115 Chemical looping combustion reactions and systems: Task 5 topical report2011-08Chemical looping combustion; CLC; Fuel combustion; CO2 capture; Electric power; Sequestration; FBR; CLOU; Thermogravimetric analysis; CO2; Carbon dioxideChemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source ...
116 Chemical looping combustion reactions and systems: task 5 topical report, Utah Clean Coal Program2014-03ICSE; Chemical looping combustion; CLC; Chemical looping with oxygen uncoupling; CLOU; Fuel-combustion technology; Economic CO2 capture; Oxygen Carriers; Simulation of dense-phase flows; Electric power; Solid fuel combustionChemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source ...
117 Chemical reaction model for oil and gas generation from type I and type II kerogen1993-06A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of ...
118 Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and Venezuela1989-12-21Twenty-one samples from natural bitumen and heavy oil deposits in seven States of the United States and six samples from outside the United States form the basis of this initial study. This Circular gives the mineral content of the reservoir rock, the trace-element distribution in the reservoir rock...
119 Chemistry and resources of heavy oil and natural bitumen deposits1989chemistry of heavy oil; chemistry of natural bitumen deposits; heavy oil resources; natural bitumen deposits; heavy oil; unconventional oil deposits; natural bitumenSupplies of conventional crude oil are diminishing; therefore, it is important to understand the reservoir characteristics of unconventional oil deposits. Reservoirs of unconventional deposits contain oils heavier than 20° gravity API and natural bitumens (tar sands and oil sands) are more viscous ...
120 Classification of natural bitumen: A physical and chemical approach1987natural bitumen; Classification of bitumen; physical properties of natural bitumen; chemical properties of natural bitumen; crude oil; natural bitumen; tar sands oil; bitumenBy correlation of various selected physical and chemical properties of heavy crude oils and natural bitumens, an attempt is made to solve classification problems. The criteria used here are, in descending order: viscosity, gravity, H/C atomic ratio, O/C atomic ratio, optical reflectivity; volatiles,...
121 Classification, petrographic expression, and reflectance of native bitumen1998-11-19Native bitumen is naturally occurring, solid organic material that originates, with few exceptions, from material expelled by sedimentary organic matter during catagenesis. Note that, in this text, the word bitumen is used to mean "native bitumen" rather than the common meaning of organic matter ext...
122 Clay-induced oil loss and alkene isomerization during oil shale retortingSunnyside (Utah) tar sand was subjected to programmed temperature pyrolysis and the volatile products were detected by tandem on-line mass spectrometry (MS/MS) in real time analyses- A heating rate of 4°C/min from room temperature to 900°C was employed. Evolution of hydrogen, light hydrocarbons, n...
123 Clean and Secure Energy From Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report, April 2016 to June 2015- Final ReportClean and Secure Energy From Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report, April 2016 to June 2015-Final Report
124 Clean and Secure Energy from Coal - Final report, Utah Clean Coal Program2015-02coal; Utah Clean Coal Program; domestic coal resources; CO2 capture; CO2 combustion; stationary power generation; V/UQ; oxy-coal combustion; high-pressure, entrained-flow coal gasification; chemical looping combustion; underground coal thermal treatment; mercury control; environmental issues; legal ...The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around t...
125 Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress ReportQuarterly report, CASE quarterly reportClean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report for Project Period: April 2015 to June 2015
101 - 125 of 1,519