76 - 100 of 120
Number of results to display per page
TitleDateSubjectDescription
76 Sedimentology of oil-impregnated, lacustrine and fluvial sandstone, P.R. Spring area, southeast Uinta Basin, Utah1970-08sedimentology; lacustrine and fluvial sandstone; P. R. Spring area; Oil-impregnated lacustrine and fluvial sandstoneOil-impregnated intervals, up to 75 feet thick within a stratigraphic interval of about 250 feet in the Garden Gulch and Parachute Creek Members of the Green River Formation (Eocene), are exposed in beds that dip gently northward in the P. R. Spring area. Reserve estimates indicate that there may be...
77 Recovery of oil from Utah's tar sands1983-03-31Utah tar sands; bitumen cleaning; PRS-R tar sands; fluidized bed thermal recoveryThis report covers the work accomplished at the University of Utah on Utah's tar sands during the period: October 1, 1979 to March 31, 1983. The work reported is a continuation of the program carried out over a period of years at the University. The primary effort of the work covered in this report ...
78 Recovery of bitumen from oil-impregnated sandstone deposits of Utah1975-11potential oil; bitumen; oil-impregnated sandstone (tar sand) deposits; tar sands; bitumen recoveryUtah contains at least 26 billion barrels of potential oil as bitumen in oil-impregnated sandstone (tar sand) deposits. As shown in this paper, these tar sands are significantly different in physical and chemical properties from commercially developed Canadian tar sands. These differences prevent di...
79 Recovery of oil from Utah's tar sands1979-11-30oil recovery; Utah tar sands; hot water recovery; thermal processing; synthetic fuelThis project is designed to develop necessary engineering data and technology for recovery of oil from Utah's tar sands. Progress reports for four major aspects of this project, namely Hot Water Recovery, Energy Recovery in Thermal Processing, Effect of Variables in Thermal Processing and Bitumen Pr...
80 Geologic characterization of Utah oil shale deposits2010-04-28oil shale development; geologic framework; lake evolution; oil shale; stratigraphic correlationWhy Geology? Economic prospectivity of oil shale development in the Uinta Basin relies heavily on establishing a solid geologic framework. Understanding lake evolution matters.
81 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - October 1, 2011 to December 31, 20112012-02-16domestic coal resources; CO2 capture; Oxy-CoalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
82 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - July 1, 2011 to September 30, 20112011-09domestic coal resources; CO2 capture; OFCThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
83 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - April 1, 2012 to June 30, 20122012-07-01domestic coal resources; CO2 capture; stationary power generation; oxyfuel combustor (OFC)The University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
84 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - October 1, 2012 to December 31, 20122013-01-01domestic coal resources; CO2 capture; Oxy-Coal; GasificationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
85 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - January 1, 2012 to March 30, 20122010-05-01domestic coal resources; CO2 capture; OFC simulationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
86 Phase II: Clean and Secure Energy from Coal: Quarterly Progress Report: January 1, 2011 to March 30, 20112011-05-01domestic coal resources; CO2 capture; coal; Oxycoal simulation team; coal sequestrationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
87 Phase 2: Clean and secure energy from coal: Quarterly progress report: October 1, 2010 to December 31, 20102011-01-31domestic coal resources; CO2 capture; stationary power generation; LES; DQMOM approach; oxy-coal flames; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
88 Phase 2: Clean and secure energy from coal: Quarterly progress report: July 1, 2010 to September 30, 20102010-10-01domestic coal resources; CO2 capture; stationary power generation; Oxycoal; OFC; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
89 Phase 2: Clean and secure energy from coal: Quarterly progress report: April 1, 2010 to June 30, 20102010-08-01domestic coal resources; CO2 capture; stationary power generation; DQMOM approachThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
90 Phase 2: Clean and secure energy from coal: Quarterly progress report: January 1, 2010 to March 31, 20102009-01-30domestic coal resources; ICSE; capture CO2; stationary power generation; velocity model; bitumous coal; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
91 Phase 2: Clean and secure energy from coal: Quarterly progress report: October 1, 2009 to December 31, 20092010-01-30domestic coal resources; CO2 capture; stationary power generation; oxy-coal flames; coal gasification processThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
92 Pore scale analysis of oil sand/oil shale pyrolysis by X-ray Micro CT and LB simulation2010-04-28unconventional fuels; characterization of the pore networks; oil sand/shale resources; LB simulation; pyrolysis reations; Multiscale X-ray Micro/Nano TomographyThe research objectives include (1) CT characterization of the pore network structure for selected oil sand/oil shale resources, (2) LB simulation of flow through pore network structures to predict transport properties, such as permeability, and (3) CT analysis of pore network structure during pyrol...
93 Pore scale analysis of oil shale/sands pyrolysis2011-03-31pore scale analysis; oil shale/sands pyrolysis; shale oil production; domestic oil shale depositsThere are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imagin...
94 Policy analysis of water availability and use issues for domestic oil shale and oil sands development: Topical Report: October 1, 2009 to March 31, 20102010-03oil shale/sands resources; energy source; unconventional fuels; water demands; water availability; domestic oil shale/sands development; topical reportOil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requiremen...
95 Policy analysis of produced water issues associated with in-situ thermal technologies: Topical report: October 1, 2009 to December 31, 20102011-01topical report; produced water issues; in situ thermal technologies; oil shale/sands; water rights; domestic energy sourceCommercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limita...
96 Pore scale analysis of oil sand/oil shale pyrolysis by X-ray Micro CT and LB simulation2010-03-03pore scale analysis; oil sand/shale pyrolysis; X-ray Micro CT and LB simulation; Lamellar Structure of Oil ShaleThe research objectives include (1) CT characterization of the pore network structure for selected oil sand/oil shale resources, (2) LB simulation of flow through pore network structures to predict transport properties, such as permeability, and (3) CT analysis of pore network structure during pyrol...
97 Oxy-gas process heaters for efficient CO2 capture2010-04-28oil shale and oil sands technology; greenhouse gas emissions; GHG; large eddy simulation; LES; IFRF OXYFLAMImplementation of oil shale/sands technologies in U.S. will require mitigation of greenhouse gas (GHG) emissions.
98 Oxy-fuel hierarchy2009-11-04oxy-fuel combustion; different fuel types; ICSEHierarchical chart for the oxy-fuel combustion research area showing connectivity between subtasks. This research area includes coal, gas, and oil oxy-burner technologies. This chart helps illustrate the integration and focus among the different fuel types and different scales represented in the hie...
99 P. R. spring oil-impregnated sandstone deposit Uintah and Grand Counties, Utah1970-02oil-impregnated sandstone beds; oil impregnation; oil shale; lenticular sandstones; siltstonesOil-impregnated sandstone beds underlie at least 214 square miles in the southeastern Uinta Basin and may extend northward beneath cover. One to as many as five principal saturated zones, 3 to 75 feet thick, occur in a 250-foot interval that dips gently northward. The northernmost outcrops are overl...
100 Interaction between reactivity and flow in the in-situ production of oil from oil shale2009-10-23in situ; oil shaleIn-situ Oil Shale Processing: 1) Underground resources are heated by some means to convert insoluable/ impermeable kerogen into oil and gas products. 2) The interlinked processes of heat transfer, kerogen conversion and flow are complex. 3) This paper is an attempt to understand these linkages.
76 - 100 of 120