26 - 50 of 40
Number of results to display per page
TitleDateSubjectDescription
26 Phase 2: Clean and secure energy from coal: Quarterly progress report: October 1, 2010 to December 31, 20102011-01-31domestic coal resources; CO2 capture; stationary power generation; LES; DQMOM approach; oxy-coal flames; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
27 Phase 2: Clean and secure energy from coal: Quarterly progress report: July 1, 2010 to September 30, 20102010-10-01domestic coal resources; CO2 capture; stationary power generation; Oxycoal; OFC; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
28 Phase 2: Clean and secure energy from coal: Quarterly progress report: April 1, 2010 to June 30, 20102010-08-01domestic coal resources; CO2 capture; stationary power generation; DQMOM approachThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
29 Phase 2: Clean and secure energy from coal: Quarterly progress report: January 1, 2010 to March 31, 20102009-01-30domestic coal resources; ICSE; capture CO2; stationary power generation; velocity model; bitumous coal; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
30 Phase 2: Clean and secure energy from coal: Quarterly progress report: October 1, 2009 to December 31, 20092010-01-30domestic coal resources; CO2 capture; stationary power generation; oxy-coal flames; coal gasification processThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
31 Pore scale analysis of oil shale/sands pyrolysis2011-03-31pore scale analysis; oil shale/sands pyrolysis; shale oil production; domestic oil shale depositsThere are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imagin...
32 Policy analysis of water availability and use issues for domestic oil shale and oil sands development: Topical Report: October 1, 2009 to March 31, 20102010-03oil shale/sands resources; energy source; unconventional fuels; water demands; water availability; domestic oil shale/sands development; topical reportOil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requiremen...
33 Policy analysis of produced water issues associated with in-situ thermal technologies: Topical report: October 1, 2009 to December 31, 20102011-01topical report; produced water issues; in situ thermal technologies; oil shale/sands; water rights; domestic energy sourceCommercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limita...
34 Land and resource management issues relevant to deploying in-situ thermal technologies: Topical Report: October 1, 2009 to December 31, 20102011-01in-situ; oil shale; domestic energy source; oil sandsUtah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation's richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable dome...
35 Lands with wilderness characteristics, Resource Management Plan constraints, and land exchanges: Cross-jurisdictional management and impacts on unconventional fuel development in Utah's Uinta Basin2012-03Utah oil shale; oil sands; unconventional fuel resources; land exchanges; land rightsUtah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource acce...
36 Gasification studies - Task 4 topical report, Utah Clean Coal Program, Reporting period October 2009 - July 20112011-10Gasification; pressurized entrained-flow coal gasifiers; coalA key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3...
37 Effect of pressure on copper/copper-oxide system functioning as an oxygen carrier in chemical looping combustion2010-06-10copper/copper-oxide system; chemical looping combustion; CLC; high pressure thermogravimetic analysisChemical Looping Combustion (CLC) is a promising technology that will utilize more efficient harvesting of energy along with decreased CO2 emissions into the atmosphere. In CLC system the emissions are composed of CO2 and H2O allowing the CO2 to be captured and disposed of in an environmentally more...
38 A technical, economic, and legal assessment of North American heavy oil, oil sands, and oil shale resources: In response to Energy Policy Act of 2005 Section 369(p)2007-09Oil sands; Oil shale; Heavy oil; Energy Policy Act; 2005; Climate Change; Petroleum; Oil Cost; United States; North American heavy oil; Utah Heavy Oil Program; UHOP; World economic development; Energy; Canadian oil sands; Unconventional resources ;Technical; Economic; Legal assessmentAgainst the backdrop of world population growth, rapid economic expansion in the world's most populous countries, challenging political climates in many oil-producing nations, and the specter of climate change, worldwide energy consumption is projected to increase from the 2004 level of just over 40...
39 Carbon dioxide sequestration: Effect of the presence of sulfur dioxide on the mineralogical reactions and on the injectivity of CO2+SO2 mixtures2010-01Carbon dioxide sequestration; CO2; Sequestration stream; Gas injection; CO2+SO2 mixture; Brine; Arkose; Calcite; Anhydrite; Calcium carbonate; CaCO3; Ankerite; Absolute permeabilities; Free-gas; Dissolved gas distribution; Saline formation; Contaminant gases; sulfur dioxide; SO2; Hydrogen sulfide; H...This report presents experimental and modeling data on certain aspects of carbon dioxide (CO2) sequestration. As different processes are developed and implemented to facilitate the capture of CO2, other contaminant gases (sulfur dioxide, hydrogen sulfide and ammonia) may be present in the sequestrat...
40 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: October 2009 to December 20092010-02-03ICSE; Clean and Secure Energy program; CASE; Itasca Group; Red Leaf Resources; Enshale's; Vernal, Utah; oxy-fuel; CO2 capture; Oil shale; Oil sands; Crude oil; CO2 emissions; International Flame Research Foundation; Pyrolysis; Lattice Boltzmann; Kerogen; Oil recovery simulation; TGA; Dry shale; Pyro...The Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. The program was officially launched on October 1, 2009. The project management plan was submitted for revi...
26 - 50 of 40