1 - 25 of 211
Number of results to display per page
TitleDateSubjectDescription
1 Development of HPC-based simulations tool for in situ thermal processing of oil shale/sandsHPC-based simulations tool; in situ thermal processing; oil shale; oil sands; commercial production of oil shale; ecoshale in-capsule processA presentation given at the Unconventional Fuels from Oil Shale and Oil Sands Project Review Meeting on March 10-11, 2011.
2 GEOMECHANICAL AND FLUID TRANSPORT PROPERTIESGEOMECHANICAL AND FLUID TRANSPORT PROPERTIES Topical Report
3 Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress ReportQuarterly report, CASE quarterly reportClean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report for Project Period: April 2015 to June 2015
4 P. R. spring oil-impregnated sandstone deposit Uintah and Grand Counties, Utah1970-02oil-impregnated sandstone beds; oil impregnation; oil shale; lenticular sandstones; siltstonesOil-impregnated sandstone beds underlie at least 214 square miles in the southeastern Uinta Basin and may extend northward beneath cover. One to as many as five principal saturated zones, 3 to 75 feet thick, occur in a 250-foot interval that dips gently northward. The northernmost outcrops are overl...
5 Sedimentology of oil-impregnated, lacustrine and fluvial sandstone, P.R. Spring area, southeast Uinta Basin, Utah1970-08sedimentology; lacustrine and fluvial sandstone; P. R. Spring area; Oil-impregnated lacustrine and fluvial sandstoneOil-impregnated intervals, up to 75 feet thick within a stratigraphic interval of about 250 feet in the Garden Gulch and Parachute Creek Members of the Green River Formation (Eocene), are exposed in beds that dip gently northward in the P. R. Spring area. Reserve estimates indicate that there may be...
6 Recovery of bitumen from oil-impregnated sandstone deposits of Utah1975-11potential oil; bitumen; oil-impregnated sandstone (tar sand) deposits; tar sands; bitumen recoveryUtah contains at least 26 billion barrels of potential oil as bitumen in oil-impregnated sandstone (tar sand) deposits. As shown in this paper, these tar sands are significantly different in physical and chemical properties from commercially developed Canadian tar sands. These differences prevent di...
7 Recovery of bitumen from oil-impregnated sandstone deposits of Utah1976bitumen recovery; oil-impregnated sandstone deposits; fossil fuels; coal; oil shale; tar sands; Athabasca tar sandsMuch attention is being given to fossil fuels such as coal, oil shale, and tar sands, as well as to nuclear, geothermal, wind, and solar energy sources. Characterization of the tar sands from the Uinta Basin is currently underway. Compared with bitumen presently being extracted commercially from Can...
8 Recovery of oil from Utah's tar sands1979-11-30oil recovery; Utah tar sands; hot water recovery; thermal processing; synthetic fuelThis project is designed to develop necessary engineering data and technology for recovery of oil from Utah's tar sands. Progress reports for four major aspects of this project, namely Hot Water Recovery, Energy Recovery in Thermal Processing, Effect of Variables in Thermal Processing and Bitumen Pr...
9 Recovery of oil from Utah's tar sands1983-03-31Utah tar sands; bitumen cleaning; PRS-R tar sands; fluidized bed thermal recoveryThis report covers the work accomplished at the University of Utah on Utah's tar sands during the period: October 1, 1979 to March 31, 1983. The work reported is a continuation of the program carried out over a period of years at the University. The primary effort of the work covered in this report ...
10 Hydrotreating the Whiterocks oil sand bitumen and bitumen-derived liquid (Abstract only)1992-12hydrotreating; Whiterocks oil; oil sand; bitumen; bitumen-derived liquid; bitumen conversion; heteroatom reduction; heteroatomConversion of Utah's Uinta Basin bitumens to liquid fuels requires molecular weight reduction of the parent material as well as removal of heteroatoms. Heteroatom reduction of bitumen obtained through solvent extraction of Whiterocks oil sand was investigated. A comparison of the relative processabi...
11 Fluidization of coked sands and pyrolysis of oil sands in a fluidized bed reactor (Abstract only)1995-12fluidization of coked sands; pyrolysis of oil sands; fluidized bed reactor; coked sands; oil sandsA 7.62 cm diameter fluidized bed oil sands pyrolysis system was designed, installed, and operated. The studies conducted with this system included coked sands and oil sands feeding using a bin discharge auger feeder, the withdrawal of solids from a fluidized bed using a modified Lvalve, fluidization...
12 From oil sand to fuel pump: The challenges of upgrading oil sand bitumen2006-09-21oil sand; upgrading oil sand bitumen; oil sand bitumen; oil sands development; crude; bitumenOil sands development--develop a resource that has market value.
13 A technical, economic, and legal assessment of North American heavy oil, oil sands, and oil shale resources: In response to Energy Policy Act of 2005 Section 369(p)2007-09Oil sands; Oil shale; Heavy oil; Energy Policy Act; 2005; Climate Change; Petroleum; Oil Cost; United States; North American heavy oil; Utah Heavy Oil Program; UHOP; World economic development; Energy; Canadian oil sands; Unconventional resources ;Technical; Economic; Legal assessmentAgainst the backdrop of world population growth, rapid economic expansion in the world's most populous countries, challenging political climates in many oil-producing nations, and the specter of climate change, worldwide energy consumption is projected to increase from the 2004 level of just over 40...
14 In situ production of Utah oil sands2008-03-12in situ; Utah oil sands; oil sands production; tar sand deposits; Whiterocks eolian sandstone
15 Industrial petroleum research at the University of Utah2008-03-12industrial petroleum; University of Utah; oil and gas characterization; oil and gas thermodynamics; Unconventional ConsortiumExpertise: Oil and Gas Characterization, Hydrocarbon Thermodynamics -High-temperature, high high-pressure oil oil-gas mixtures -Supercritical extraction -Solid (asphaltenes, waxes) precipitation precipitation -Reservoir Characterization and Simulation -Fractured reservoir simulation -Reaction chemis...
16 High efficiency electrical generation2008-05-23efficiency of electrical generation; electrical generation; fossil fuel energy resources; mitigatint GHG emissions; CO2 capture and sequestrationOutline: 1-Electricity outlook and fossil fuel energy resources. 2-Technology options for mitigating GHG emissions. 3-CO2 cpature and sequestration. 4-Costs. 5-Concluding remarks.
17 Investigation of coal char-slag transition during oxidation: Effect of temperature and residual carbon2009coal char; molten slag; bitumous coal; energy and fuelsThe transition of coal char to molten slag at high conversion was studied for a bituminous coal using a laminar entrained-flow reactor under oxidizing conditions. Post-oxidized char particles were analyzed by various techniques including loss-on-ignition, gas adsorption analysis and scanning electro...
18 Phase 2: Clean and secure energy from coal: Quarterly progress report: January 1, 2010 to March 31, 20102009-01-30domestic coal resources; ICSE; capture CO2; stationary power generation; velocity model; bitumous coal; coalThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
19 KTIA corporate introduction2009-02-27KTIA; KTI; minesOverview of KTIA's continuing oil sands development activities in Utah, presented at the 2009 Western U.S. Oil Sands Conference by Soung-Joon Kim, Chief Operating Officer, Korea Technology Industry America, Inc.
20 Welcome and Introduction: 2009 Western U.S. Oil Sands Conference2009-02-27oil sands industry; industrial combustion; gasification technology research; CO2 capture technologies; coal; OxyFuel Combustion; chemical looping; gasification; oil shale/sandsSummary of challenges facing U.S. oil sands industry and the role of the Institute for Clean and Secure Energy at the University of Utah in addressing those challenges, presented at the 2009 Western U.S. Oil Sands Conference by Philip Smith, Professor, Department of Chemical Engineering and Director...
21 In situ production of Utah oil sands2009-02-27in situ; oil sands production; Utah oil sands; in situ process; thermal simulator; thermal compositional model; steam assisted gravity drainage; SAGD; heterogenetics; in-situ combustion; hydraulic fracture; hybrid processAnalysis of issues relevant to in situ production of Utah oil sands, presented at the 2009 Western U.S. Oil Sands Conference by Milind Deo, Professor, Department of Chemical Engineering, University of Utah.
22 Bitumen extraction and treatment and reuse of process water2009-04-13bitumen extraction; bitumen treatment; reuse of process water; produced water; crude oil production; gas production; pressure-assisted ozonation technology; oil removal from water; wastewater treatment; hydrocarbon removalProduced water from gas and crude oil production is voluminous, requiring extensive treatment before it can be safely discharged or reused. This project has used a newly developed pressure-assisted ozonation technology to remove oil from water and prevent oil sheen at the water surface. The new proc...
23 Production of hydrogen for upgrading of heavy oil: Senior design project--Spring 20092009-04-22oil supply; conventional oil sources; unconventional oil sources; oil shale; synthetic crude production; shale oilAn important technical hurdle to the production of oil from abundant oil shale resources is how to create enough hydrogen for upgrading the heavy oils produced from the shale prior to transport through pipelines. In order to avoid clogging pipelines during transport roughly 350scm (standard cubic me...
24 Utah Clean Coal Center: Gasification research activities2009-09clean coal center; gasification research; UC3; gasification; low CO2 production; electric power from coal; entrained-flow gasification; simulation tools for coal gasifiersThe Utah Clean Coal Center (UC3) was established at the University of Utah through a cooperative agreement from the U.S. DOE / NETL. The center had five thrust areas critical for successful development of advanced technologies for power production from coal with minimal environmental impact. One of ...
25 Interaction between reactivity and flow in the in-situ production of oil from oil shale2009-10-23in situ; oil shaleIn-situ Oil Shale Processing: 1) Underground resources are heated by some means to convert insoluable/ impermeable kerogen into oil and gas products. 2) The interlinked processes of heat transfer, kerogen conversion and flow are complex. 3) This paper is an attempt to understand these linkages.
1 - 25 of 211