1 - 25 of 25
Number of results to display per page
TitleDateSubjectDescription
1 Development of HPC-based simulations tool for in situ thermal processing of oil shale/sandsHPC-based simulations tool; in situ thermal processing; oil shale; oil sands; commercial production of oil shale; ecoshale in-capsule processA presentation given at the Unconventional Fuels from Oil Shale and Oil Sands Project Review Meeting on March 10-11, 2011.
2 Industrial petroleum research at the University of Utah2008-03-12industrial petroleum; University of Utah; oil and gas characterization; oil and gas thermodynamics; Unconventional ConsortiumExpertise: Oil and Gas Characterization, Hydrocarbon Thermodynamics -High-temperature, high high-pressure oil oil-gas mixtures -Supercritical extraction -Solid (asphaltenes, waxes) precipitation precipitation -Reservoir Characterization and Simulation -Fractured reservoir simulation -Reaction chemis...
3 Subtask 4.3: Multiscale thermal processing of oil shale2011-03-10thermal processing; oil shale; oil shale treatment; thermal treatment
4 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report - October 2014-December 20142014domestic oil shale; domestic oil sands; ICSE; CO2 management; clean energy; oil and gas production; liquid fuel production; thermal processing of oil shale/sandsThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program, part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah, is focused on engineering, scientific, and legal research surrounding the development of these resources in ...
5 Underground coal thermal treatment - Task 6 topical report, Utah Clean Coal Program2015-01transformational energy production; insitu thermal treatment of a coal seam; coal reserves; underground coal thermal treatment; Utah Clean Coal Program; coal resourcesThe long-term objective of this task is to develop a transformational energy production technology by in situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal's carbon in the ground. This process converts ...
6 High efficiency electrical generation2008-05-23efficiency of electrical generation; electrical generation; fossil fuel energy resources; mitigatint GHG emissions; CO2 capture and sequestrationOutline: 1-Electricity outlook and fossil fuel energy resources. 2-Technology options for mitigating GHG emissions. 3-CO2 cpature and sequestration. 4-Costs. 5-Concluding remarks.
7 2012 Unconventional fuels conference introduction2012-05-15unconventional fuels; computational simulation and pilot-scale experiment; unconventional resources; emissions minimization; CO2 regulation; CO2 coal researchPresentation given at the 2012 Unconventional Fuels Conference.
8 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - April 1, 2012 to June 30, 20122012-07-01domestic coal resources; CO2 capture; stationary power generation; oxyfuel combustor (OFC)The University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
9 Recovery of bitumen from oil-impregnated sandstone deposits of Utah1976bitumen recovery; oil-impregnated sandstone deposits; fossil fuels; coal; oil shale; tar sands; Athabasca tar sandsMuch attention is being given to fossil fuels such as coal, oil shale, and tar sands, as well as to nuclear, geothermal, wind, and solar energy sources. Characterization of the tar sands from the Uinta Basin is currently underway. Compared with bitumen presently being extracted commercially from Can...
10 P. R. spring oil-impregnated sandstone deposit Uintah and Grand Counties, Utah1970-02oil-impregnated sandstone beds; oil impregnation; oil shale; lenticular sandstones; siltstonesOil-impregnated sandstone beds underlie at least 214 square miles in the southeastern Uinta Basin and may extend northward beneath cover. One to as many as five principal saturated zones, 3 to 75 feet thick, occur in a 250-foot interval that dips gently northward. The northernmost outcrops are overl...
11 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - January 1, 2012 to March 30, 20122010-05-01domestic coal resources; CO2 capture; OFC simulationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
12 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report - January 2013-March 20132013clean energy; domestic fuels; oil shale resources; oil sands resources; CO2 management; liquid fuel procuction; in-situ thermal processing; oil shale processingThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program, part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah, is focused on engineering, scientific, and legal research surrounding the development of these resources in ...
13 Pore scale analysis of oil shale/sands pyrolysis2011-03-31pore scale analysis; oil shale/sands pyrolysis; shale oil production; domestic oil shale depositsThere are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imagin...
14 Phase 2: Clean and secure energy from coal: Quarterly progress report: April 1, 2010 to June 30, 20102010-08-01domestic coal resources; CO2 capture; stationary power generation; DQMOM approachThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
15 Regulatory promotion of emergent CCS technology - Topical report2014-01CCS technology; climate change; mitigation strategies; carbon capture and sequestrationDespite the growing inevitability of climate change and the attendant need for mitigation strategies, carbon capture and sequestration (CCS) has yet to gain much traction in the United States. Recent regulatory proposals by the U.S. Environmental Protection Agency (EPA), limited in scope to new-buil...
16 Validation results for core-scale oil shale pyrolysis2015-02oil and natural gas technology; validation results; core-scale oil shale pyrolysis; in situ production of oil from oil shale; oil shale; pyrolysis of oil shaleThis report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales,...
17 Sedimentology of oil-impregnated, lacustrine and fluvial sandstone, P.R. Spring area, southeast Uinta Basin, Utah1970-08sedimentology; lacustrine and fluvial sandstone; P. R. Spring area; Oil-impregnated lacustrine and fluvial sandstoneOil-impregnated intervals, up to 75 feet thick within a stratigraphic interval of about 250 feet in the Garden Gulch and Parachute Creek Members of the Green River Formation (Eocene), are exposed in beds that dip gently northward in the P. R. Spring area. Reserve estimates indicate that there may be...
18 A technical, economic, and legal assessment of North American heavy oil, oil sands, and oil shale resources: In response to Energy Policy Act of 2005 Section 369(p)2007-09Oil sands; Oil shale; Heavy oil; Energy Policy Act; 2005; Climate Change; Petroleum; Oil Cost; United States; North American heavy oil; Utah Heavy Oil Program; UHOP; World economic development; Energy; Canadian oil sands; Unconventional resources ;Technical; Economic; Legal assessmentAgainst the backdrop of world population growth, rapid economic expansion in the world's most populous countries, challenging political climates in many oil-producing nations, and the specter of climate change, worldwide energy consumption is projected to increase from the 2004 level of just over 40...
19 Lands with wilderness characteristics, Resource Management Plan constraints, and land exchanges: Cross-jurisdictional management and impacts on unconventional fuel development in Utah's Uinta Basin2012-03Utah oil shale; oil sands; unconventional fuel resources; land exchanges; land rightsUtah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource acce...
20 Phase II: Clean and Secure Energy from Coal: Quarterly Progress Report: January 1, 2011 to March 30, 20112011-05-01domestic coal resources; CO2 capture; coal; Oxycoal simulation team; coal sequestrationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
21 Policy analysis of water availability and use issues for domestic oil shale and oil sands development: Topical Report: October 1, 2009 to March 31, 20102010-03oil shale/sands resources; energy source; unconventional fuels; water demands; water availability; domestic oil shale/sands development; topical reportOil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requiremen...
22 Quarterly Progress Report Phase 3: Clean and Secure Energy from Coal - October 1, 2012 to December 31, 20122013-01-01domestic coal resources; CO2 capture; Oxy-Coal; GasificationThe University of Utah is pursuing research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is organized around the theme of validation and uncertainty quantification throug...
23 Rates and mechanisms of oil shale pyrolysis: A chemical structure approach2014-11Green River oil shale; oil and natural gas technology; oil shale pyrolysis; chemical structure of oil shaleThree pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host...
24 Utah Clean Coal Center: Gasification research activities2009-09clean coal center; gasification research; UC3; gasification; low CO2 production; electric power from coal; entrained-flow gasification; simulation tools for coal gasifiersThe Utah Clean Coal Center (UC3) was established at the University of Utah through a cooperative agreement from the U.S. DOE / NETL. The center had five thrust areas critical for successful development of advanced technologies for power production from coal with minimal environmental impact. One of ...
25 Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility - Task 9 Topical Report, Utah Clean Coal Program2014-10large eddy simulations; Utah Clean Coal Program; heat flux; Tangenitally Fired Oxy-coal Alstom Boiler Simulation Facility; task 9; oxy-coal boilers; BSF; coalThe objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task b...
1 - 25 of 25