301 - 325 of 1,699
Number of results to display per page
TitleDateSubjectDescription
301 Characterization of DOE reference oil shale: Tipton Member, Green River Formation oil shale from Wyoming1988-08Measurements have been made of the chemical and physical properties of a Tipton Member Green River Formation oil shale from Wyoming. This shale has been designated as a western reference shale by the Department of Energy. Material balance Fischer assays, carbon aromaticities, thermal properties, and...
302 Characterization of macromolecular structure elements from a Green River oil shale2013-10-14Macromolecular Structure; Green River; Oil Shale; 33rd Oil Shale Symposium; Golden, Colorado; Kerogen; Shale; Green River oil shale; BitumenThis work is based upon work supported by the Department of Energy under Award Number DENT0005015. The views and opinions expressed herein do not necessarily state or reflect thoseof the United States Government or any agency thereof.
303 Characterization of nickel and vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection1988-02Previously, we have examined the Ni and V in heavy crude oils, residua, and processed products by several metal speciation techniques to ascertain molecular structure and processing behavior. Two classes 01 metal compounds were found -- metallopetroporphyrins and metallo-nonporphyrins - each having ...
304 Characterization of particulate emissions: Size fractionation and chemical speciation2003-12Particulate emissions; Size fractionation; Chemical speciation; DoD emission sources; Aircraft ground support vehicles; Rocket motors; Aircraft; Sandblasting operations; Aerosol time-of-flight mass spectrometer; ATOFMS; Photoelectric aerosol sensor; PAS; Polycyclic aromatic hydrocarbons; PAH; Photoa...This study developed and validated innovative techniques for characterizing the amount and composition of PM10, PM2.5, and smaller particles for four major classes of DoD emission sources: aircraft ground support vehicles, rocket motors, aircraft, and sandblasting operations. The techniques include ...
305 Characterization of Pyrolysis Products from a Utah Green River Oil Shale by 13C NMR, GC/MS, and FTIR2013-10-14Pyrolysis; Utah; Green River; Oil Shale; GC/MS; FTIR; 33rd Oil Shale Symposium; Kerogen; Oil shale kerogen; 13C; NMR; TGA
306 Characterization of Uinta Basin oil sand bitumens1992-11-15Uinta Basin; Oil sand bitumens; Southwest Whiterocks; Northwest Whiterocks; Asphalt Ledge; Sunnyside; Solvent extraction; Elution chromatography; Saturate and monoaromatic fractions; Polycyclic naphthenes; Naphthenoaromatics; Steranes; HopanesResults of the analyses of the saturate and monoaromatic fractions of four Uinta Basin bitumens (southwest Whiterocks, northwest Whiterocks, Asphalt ledge and Sunnyside) are presented in this paper. After separating the bitumen samples into several fractions using solvent extraction and elution chro...
307 Chemical kinetics and oil shale process design1993-07Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reac...
308 Chemical looping combustion hierarchy2009-11-04Chemical looping combustion; CLC; hierarchical chart; CLC integration; ISCE; Research area; SubtasksHierarchical chart for the chemical looping combustion (CLC) research area hierarchical chart showing connectivity between subtasks. This chart helps illustrate CLC integration and focus and also serves as a management tool for the various subtasks. Subtasks in brown and orange are currently funded ...
309 Chemical looping combustion reactions and systems: Task 5 topical report2011-08Chemical looping combustion; CLC; Fuel combustion; CO2 capture; Electric power; Sequestration; FBR; CLOU; Thermogravimetric analysis; CO2; Carbon dioxideChemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source ...
310 Chemical looping combustion reactions and systems: task 5 topical report, Utah Clean Coal Program2014-03ICSE; Chemical looping combustion; CLC; Chemical looping with oxygen uncoupling; CLOU; Fuel-combustion technology; Economic CO2 capture; Oxygen Carriers; Simulation of dense-phase flows; Electric power; Solid fuel combustionChemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source ...
311 Chemical reaction model for oil and gas generation from type I and type II kerogen1993-06A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of ...
312 Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and Venezuela1989-12-21Twenty-one samples from natural bitumen and heavy oil deposits in seven States of the United States and six samples from outside the United States form the basis of this initial study. This Circular gives the mineral content of the reservoir rock, the trace-element distribution in the reservoir rock...
313 Chemistry and resources of heavy oil and natural bitumen deposits1989chemistry of heavy oil; chemistry of natural bitumen deposits; heavy oil resources; natural bitumen deposits; heavy oil; unconventional oil deposits; natural bitumenSupplies of conventional crude oil are diminishing; therefore, it is important to understand the reservoir characteristics of unconventional oil deposits. Reservoirs of unconventional deposits contain oils heavier than 20° gravity API and natural bitumens (tar sands and oil sands) are more viscous ...
314 Classification of natural bitumen: A physical and chemical approach1987natural bitumen; Classification of bitumen; physical properties of natural bitumen; chemical properties of natural bitumen; crude oil; natural bitumen; tar sands oil; bitumenBy correlation of various selected physical and chemical properties of heavy crude oils and natural bitumens, an attempt is made to solve classification problems. The criteria used here are, in descending order: viscosity, gravity, H/C atomic ratio, O/C atomic ratio, optical reflectivity; volatiles,...
315 Classification, petrographic expression, and reflectance of native bitumen1998-11-19Native bitumen is naturally occurring, solid organic material that originates, with few exceptions, from material expelled by sedimentary organic matter during catagenesis. Note that, in this text, the word bitumen is used to mean "native bitumen" rather than the common meaning of organic matter ext...
316 Clay-induced oil loss and alkene isomerization during oil shale retortingSunnyside (Utah) tar sand was subjected to programmed temperature pyrolysis and the volatile products were detected by tandem on-line mass spectrometry (MS/MS) in real time analyses- A heating rate of 4°C/min from room temperature to 900°C was employed. Evolution of hydrogen, light hydrocarbons, n...
317 Clean and secure energy from coal - Phase 3 statement of project objectives2011-07-01ICSE; University of Utah; CO2 capture; Oxy-coal combustion; Domestic coal resources; Stationary power generation; Clean coal utilization; Chemical looping combustion; CLC; High-pressure entrained-flow coal gasification; IGCC; SNG; NGCC; CNGThe University of Utah (the Recipient), via their Institute for Clean and Secure Energy (ICSE), shall pursue research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research is orga...
318 Clean and secure energy from coal, oil shale, and oil sands: Quarterly progress report: January 1, 2009 to March 31, 20092009-04-30CASE; ICSE; Energy development; Electric power generation; Liquid transportaion fuels; Coal; Oil sands; Oil shale; Clean Coal Program; Oil Shale and Sands Program; OSSP; Policy Environment, and Economics Program; PEEP; Reducing carbon footprint; CO2 capture; Sequestration; Chemical looping; ODT; LES...The University of Utah Clean and Secure Energy (CASE) project is pursuing interdisciplinary, cradle-to-grave research and development of energy for electric power generation and for liquid transportation fuels from the abundant domestic resources of coal, oil sands, and oil shale. Its work is divide...
319 Clean and secure energy from coal, oil shale, and oil sands: Quarterly progress report: July 1, 2009 to September 30, 20092009-10-30ICSE; Electric power generation; Liquid transportation fuels; Coal; Oil sands; Oil shale; Clean Coal Program; the Oil Shale and Sands Program; OSSP; the Policy Environment, and Economics Program; PEEP; CO2 capture; Sequestration; Oxy-coal combustion; Coal analysis; Ash partitioningThe University of Utah Clean and Secure Energy (CASE) project is pursuing interdisciplinary, cradle-to-grave research and development of energy for electric power generation and for liquid transportation fuels from the abundant domestic resources of coal, oil sands, and oil shale. Its work is divide...
320 Clean and secure energy from coal, oil shale, and oil sands: Quarterly progress report: October 1, 2008 to December 31, 20082008-01-31CASE; Energy development; Electric power generation; Liquid transportation fuels; Coal; Oil sands; Oil shale; Clean Coal Program; Oil Shale and Sands Program; OSSP; Policy Environment, and Economics Program; PEEP; CO2 capture; sequestration; Chemical looping combustion; CLC; Ash-partitioning; PIV; P...The University of Utah Clean and Secure Energy (CASE) project is pursuing interdisciplinary, cradle-to-grave research and development of energy for electric power generation and for liquid transportation fuels from the abundant domestic resources of coal, oil sands, and oil shale. It's work is divid...
321 Clean and secure energy from coal, oil shale, and oil sands: Revised quarterly progress report: April 1, 2009 to June 30, 20092009-08-13CASE; Energy development; Electric power generation; Liquid transportation fuels; Coal; Oil sands; Oil shale; Clean Coal Program; Oil Shale and Sands Program; OSSP; Policy Environment, and Economics Program; PEEP; CO2 capture; sequestration; Gasification; Chemical looping combustion; CLC; Ash-partit...The University of Utah Clean and Secure Energy (CASE) project is pursuing interdisciplinary, cradle-to-grave research and development of energy for electric power generation and for liquid transportation fuels from the abundant domestic resources of coal, oil sands, and oil shale. Its work is divide...
322 Clean and secure energy from coal: Project management plan: Revision A2009-12-01ICSE; PMP; DE-NT0005015; NETL; Strategic Center for Coal; SCC; Strategic Center for Natural Gas and Oil; SCNGO; Domestic coal resources; Energy; CO2 capture; Combustion; Stationary power generation; Clean coal utilization; Oxy-coal combustion; High-pressure, Entrained-flow Gasification; IGCC; Chemic...Revision history: Revision A, November 25, 2009. The PMP is being revised to reflect Modification #001 of award DE-NT0005015. The original PMP reflected the original award executed on September 10, 2008, for a project entitled Clean and Secure Energy from Coal, Oil Shale, and Oil Sands. The original...
323 Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress ReportQuarterly report, CASE quarterly reportClean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report for Project Period: April 2015 to June 2015
324 Clean and Secure Energy From Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report, April 2016 to June 2015- Final ReportClean and Secure Energy From Domestic Oil Shale and Oil Sands Resources Quarterly Progress Report, April 2016 to June 2015-Final Report
325 Clean and secure energy from domestic oil shale and oil sands resources: Quarterly progress report: April 2010 to June 20102010-07-31ICSE; Oil shale; Oil sands; Oxy-fuel; CO2 capture; OXYFLAM; Uinta Basin; Utah; Parachute Creek Member; X-ray microtomography; Freen River oil; Kerogen; Thermal gravimetric analyzer experimentsThe Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program is part of the research agenda of the Institute for Clean and Secure Energy (ICSE) at the University of Utah. In this quarter, the Clean and Secure Energy program continued its efforts to enhance the dialogue between...
301 - 325 of 1,699