1 - 25 of 3
Number of results to display per page
CreatorTitleDescriptionSubjectDate
1 Rahman, AowabinDeep recurrent neural networks for building energy predictionThis poster illustrates the development of a deep recurrent neural network (RNN) model using long-short-term memory (LSTM) cells to predict energy consumption in buildings at one-hour time resolution over medium-to-long term time horizons ( greater than or equal to 1 week).Machine learning; Energy; Building energy modeling; Deep learning; Recurrent neural networks; Prediction2017-01-13
2 Rahman, AowabinPredicting electricity consumption for commercial and residential buildings using deep recurrent neural networksThis paper presents a recurrent neural network model to make medium-to-long term predictions, i.e. time horizon of ≥ 1 week, of electricity consumption profiles in commercial and residential buildings at one-hour resolution. Residential and commercial buildings are responsible for a significant fr...Building Energy Modeling; Machine learning; Recurrent neural networks; Deep learning; Electric load prediction2017
3 Rahman, AowabinPredicting fuel consumption for commercial building with machine learning algorithmsThis paper presents a modeling framework that uses machine learning algorithms to make longterm, i.e. one year-ahead predictions, of fuel consumption in multiple types of commercial prototype buildings at one-hour resolutions. Weather and schedule variables were used as model inputs, and the hourly ...Building energy modeling; Machine learning; Prediction; Heating load; Data-driven modeling2017-08
1 - 25 of 3