Bone-Anchored Devices that Permanently Pass Through the Skin to Maximize Amputee Function

Update Item Information
Title Bone-Anchored Devices that Permanently Pass Through the Skin to Maximize Amputee Function
Creator Bachus, K.N.; Sinclair, S.K.; Henninger, H.B.; Bloebaum, R.D.
Subject Diffusion of Innovation; Amputees; Veterans; Osseointegration; Bone-Anchored Prosthesis; Artificial Limbs; Quality of Life; Knowledge Discovery
Keyword Innovation; Biomechicla Function
Image Caption Patients with Utah's Percutaneous Osseointegrated Prosthesis, which provides direct skeletal attachment of artificial limbs to improve biomechanical function and quality of life.
Description A common orthopedic approach to recreating damaged joints is to securely attach a metal implant to the patient's own bone, a process known as osseointegration. Our research explores a new approach by engineering percutaneous osseointegration devices, in which the metal implant that pass permanently through the skin and permit connection to an external prosthetic limb when desired. The connection can not only be accomplished easily as needed; it also improves the function of the prosthesis. A team of researchers at the University of Utah has conducted a variety of engineering and animal studies of this innovative device, which culminated in the approval and successful completion of an FDA feasibility study in a population of 10 veterans with transfemoral amputations. The team is now conducting a larger multicenter trial in that population and is initiating a second feasibility study on patients with transhumeral amputation. The long-term goal of this research is to help maximize both functional recovery and quality of life among amputees.
Relation is Part of 2019
Publisher Spencer S. Eccles Health Sciences Library, University of Utah
Date Digital 2021
Date 2019
Type Image
Format image/jpeg
Rights Management Copyright © 2021, University of Utah, All Rights Reserved
Language eng
ARK ark:/87278/s6tx9fbj
References 1.) Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk. Isackson D, McGill LD, Bachus KN. Med Eng Phys. 2011 May;33(4):418. doi:10.1016/j.medengphy. 2010.11.007. Epub 2010 Dec 10. PMID: 21145778; PMCID: PMC3071885. 2.) Cortical bone response to the presence of load-bearing percutaneous osseointegrated prostheses. Jeyapalina S, Beck JP, Bachus KN, Bloebaum RD. Anat Rec (Hoboken). 2012 Sep;295(9):1437. doi: 10.1002/ar.22533. Epub 2012 Jul 16. PMID: 22807281. 3.) Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model. Jeyapalina S, Beck JP, Bachus KN, Chalayon O, Bloebaum RD. Clin Orthop Relat Res. 2014 Oct;472(10):2966. doi: 10.1007/s11999-014-3523-z. PMID: 24557934; PMCID: PMC4160482. 4.) Progression of bone ingrowth and attachment strength for stability of percutaneous osseointegrated prostheses. Jeyapalina S, Beck JP, Bloebaum RD, Bachus KN. Clin Orthop Relat Res. 2014 Oct;472(10):2957. doi: 10.1007/s11999-013-3381-0. PMID: 24258685; PMCID: PMC4160472. 5.) Transhumeral loading during advanced upper extremity activities of daily living. Drew AJ, Izykowski MT, Bachus KN, Henninger HB, Foreman KB. PLoS ONE. 2017 December 19;12(12): e0189418. 6.) Characterization and evaluation of fluoridated apatites for the development of infection-free percutaneous devices. Bennett BT, Beck JP, Papangkorn K, Colombo JS, Bachus KN, Agarwal J, Shieh JF, Jeyapalina S. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:665. doi: 10.1016/j.msec.2019.03.025. Epub 2019 Mar 12. PMID: 30948103. 7.) Sex and laterality differences in medullary humerus morphology. Drew AJ, Tashjian RZ, Henninger HB, Bachus KN. Anat Rec (Hoboken). 2019 Oct;302(10):1709. doi: 10.1002/ar.24138. Epub 2019 May 1. PMID: 30989818; PMCID: PMC6767548. 8.) Variation in bone response to the placement of percutaneous osseointegrated endoprostheses: A 24-month follow-up in sheep. Jeyapalina S, Beck JP, Drew A, Bloebaum RD, Bachus KN. PLoS One. 2019 Oct 25;14(10):e0221850. doi: 10.1371/journal.pone.0221850. PMID: 31652276; PMCID: PMC6814231. 9.) Initial stability of a percutaneous osseointegrated endoprosthesis with proximal interlocking screws for transhumeral amputees. Drew AJ, Taylor CE, Tashjian RZ, Chalmers PN, Henninger HB, Bachus KN. Clin Biomech (Bristol, Avon). 2020 Feb;72:108. doi: 10.1016/j.clinbiomech.2019.12.005. Epub 2019 Dec 6. PMID: 31862604; PMCID: PMC7414792. 10.) Upper extremity prosthetic selection influences loading of transhumeral osseointegrated systems. Taylor CE, Drew AJ, Zhang Y, Qiu Y, Bachus KN, Foreman KB, Henninger HB. PLoS One. 2020 Aug 6;15(8):e0237179. doi: 10.1371/journal.pone.0237179. PMID: 32760149; PMCID: PMC7410272. 11.) Replicating dynamic humerus motion using an industrial robot. Aliaj, K, Feeney GM, Sundaralingam B, Hermans T, Foreman KB, Bachus KN, Henninger HB. PLoS One. 2020 Nov 9;15(11):e0242005. 12.) Estimated forces and moments experienced by osseointegrated endoprostheses for lower extremity amputees. Taylor CE, Zhang Y, Qiu Y, Henninger HB, Foreman KB, Bachus KN. Gait Posture. 2020 Jul;80:49. doi: 10.1016/j.gaitpost.2020.05.018. Epub 2020 May 20. PMID: 32485424; PMCID: PMC7417188. 13.) Cortical and medullary morphology of the tibia. Taylor, CE, Henninger, HB, Bachus, KN. Anat Rec. 2021 March;304(3):507. doi: 10.1002/ar.24479.
Press Releases and Media University of Utah Health: "U Researchers Developing Prosthetic Implant"; DAV: "Clinical Trial Aims to Change the Lives of Amputees"; "Groundbreaking Clinical Trial Prepares for Next Phase"
Setname ehsl_50disc
ID 1703467
Reference URL
Back to Search Results