Publication Type |
pre-print |
School or College |
College of Engineering |
Department |
Electrical & Computer Engineering |
Creator |
Mathews, V. John |
Other Author |
Zhu, Daimei; Detienne, David H. |
Title |
A phase likelihood-based algorithm for blind identification of PSK signals |
Date |
2014-01-01 |
Description |
This paper presents a phase likelihood-based method for automatically identifying different phase-shift keying (PSK) modulations. This method identifies the PSK signals as the hypothesis for which the likelihood function of phase difference between nearby samples of the received signal is the maximum. This method does not need prior knowledge of carrier frequency or baud rate and can identify modulation types at relatively low signal-to-noise ratio (SNR) and using small number of input samples. Simulation results demonstrate that this algorithm can identify BPSK, QPSK and 8PSK signals with 100% accuracy with only 1000 symbols when the SNR of the input signal is better than 7 dB. Additional simulation results demonstrating the robustness of the algorithm to variations of the noise characteristics from the assumed Gaussian model are also included in the paper. Performance comparisons indicate that the approach of this paper can achieve 100% accuracy in modulation identification at 5-7 dB lower SNR than competing methods available in the literature. |
Type |
Text |
Publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
First Page |
5730 |
Last Page |
5740 |
Language |
eng |
Bibliographic Citation |
Zhu, D., Mathews, V. J., & Detienne, D. H. (2014). A phase likelihood-based algorithm for blind identification of PSK signals. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 5730-4. |
Rights Management |
(c) 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. |
Format Medium |
application/pdf |
Format Extent |
305,406 bytes |
Identifier |
uspace,18888 |
ARK |
ark:/87278/s6r81qbn |
Setname |
ir_uspace |
ID |
712659 |
Reference URL |
https://collections.lib.utah.edu/ark:/87278/s6r81qbn |