Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates

Update Item Information
Publication Type Journal Article
School or College School of Medicine
Department Neurosurgery
Creator Dailey, Andrew T.; Brodke, Darrel S.; Bachus, Kent N.
Other Author Klimo Jr., Paul; Braun, John T.
Title Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates
Date 2006
Description Background: Anterior plates provide stability following decompression and fusion of the cervical spine. Various plate designs have emerged, and they include static plates with fixed-angle screws, rotationally dynamic plates that allow the screws to toggle in the plate, and translationally dynamic plates that allow the screws to both toggle and translate vertically. The goal of this study was to document the effects of plate design following a single-level corpectomy and placement of a full-length strut graft and the effects following 10% subsidence of the graft. Methods: A total of twenty-one cadaveric cervical spines (C2-T1) were randomized into three treatment groups and were tested for initial range of motion. A C5 corpectomy was performed, reconstruction was done with a full-length interbody spacer containing a load-cell, and an anterior cervical plate was applied. Load-sharing data were recorded with incremental axial loads. The range of motion was measured with ±2.5 Nm of torque in flexion-extension, lateral bending, and axial rotation. Then, the total length of the interbody spacer was reduced by 10% to simulate subsidence, and load-sharing and the range of motion were retested. Results: With the full-length interbody spacer, there were no significant differences in the abilities of the constructs to share load or limit motion. Following shortening of the interbody spacer, the static plate construct lost nearly 70% of its load-sharing capability, while neither of the dynamic plate constructs lost load-sharing capabilities. Also, the static plate construct allowed significantly more motion in flexion-extension following simulated subsidence than did either of the dynamic plate constructs (p < 0.05). Conclusions: Although all of the tested anterior cervical plating systems provide similar load-sharing and stiffness following initial placement of the interbody spacer, the static plate system lost its ability to share load and limit motion following simulated subsidence of the interbody spacer. Both dynamic plate systems maintained load-sharing and stiffness despite simulated subsidence. Clinical Relevance: This study provides an improved understanding of the immediate performance of anterior cervical-fusion surgery with plate fixation.
Type Text
Publisher Journal of Bone and Joint Surgery
First Page 1566
Last Page 1573
Subject Anterior cervical fixation; Load-sharing; Stability; Static plates; Dynamic plates
Subject LCSH Cervical vertebrae; Cervical vertebrae -- Surgery; Bone plates (Orthopedics)
Language eng
Bibliographic Citation Brodke, D. S., Klimo Jr., P., Bachus, K. N., Braun, J. T., & Dailey, A. T. (2006). Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates. Journal of Bone and Joint Surgery - American, 88, 1566-73.
Rights Management (c)Journal of Bone and Joint Surgery
Format Medium application/pdf
Format Extent 643,436 bytes
Identifier ir-main,13183
ARK ark:/87278/s6z32hbp
Setname ir_uspace
ID 707440
Reference URL https://collections.lib.utah.edu/ark:/87278/s6z32hbp
Back to Search Results