Description |
Today's part geometries are becoming ever more complex and require more accurate tool path to manufacture. Machining process efficiency is also a major consideration for designers as well as manufacturing engineers. Although the current advanced CAD/CAM systems have greatly improved the efficiency and accuracy of machining with the introduction of Numerically Controlled (NC) machining, excessive material may still be left on the finished part due to machining constraints, including the inaccessibility of the designed part geometry with respect the cutter, machine motion constraints like ramp angles, specific cutting patterns, etc. Polishing operations such as grinding and hand finishing are quite time consuming and expensive and may damage the surface of the part or introduce inaccuracies because of human errors. Although most of the existing machining approaches attempt to reduce such excessive restmaterials by modifying NC tool paths, none of them is satisfactory. They can be time consuming, error prone, computationally intensive, too complicated to implement, and limited to certain problem domains. A compensating cleanup tool path will be developed in this research to automatically remove these excessive material from the finish part. This method greatly reduces the burden of hand finishing and polishing and also reduces the error and complexities introduced in manually generating cleanup tool paths in the shop floor. More important, the tool path generated by this method will reduce the machining time and increase tool life compared with optimized tool path which left no excessive material behind. |