References |
Arora A. (2020). Artificial intelligence: a new frontier for anaesthesiology training. British journal of anaesthesia, 125(5), e407-e408. https://doi.org/10.1016/j.bja.2020.06.049. 2. Arora, A., & Arora, A. (2022). Generative adversarial networks and synthetic patient data: current challenges and future perspectives. Future healthcare journal, 9(2), 190-193. Presentations are communication tools that can be used as demonstrations, lectures, speeches, reports, and more. 3. Burlina, P. M., Joshi, N., Pacheco, K. D., Liu, T. Y. A., & Bressler, N. M. (2019). Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration. JAMA ophthalmology, 137(3), 258-264. https://doi.org/10.1001/jamaophthalmol.2018.6156. 4. Semerád, L., Drahanský, M. (2020). Retinal Vascular Characteristics. In: Uhl, A., Busch, C., Marcel, S., Veldhuis, R. (eds) Handbook of Vascular Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-27731-4_11. 5. Wang, Z., Lim, G., Ng, W. Y., Keane, P. A., Campbell, J. P., Tan, G. S. W., Schmetterer, L., Wong, T. Y., Liu, Y., & Ting, D. S. W. (2021). Generative adversarial networks in ophthalmology: what are these and how can they be used?. Current opinion in ophthalmology, 32(5), 459-467. Presentations are communication tools that can be used as demonstrations, lectures, speeches, reports, and more. 6. Wu, Y., Donahue, J., Balduzzi, D., Simonyan, K., & Lillicrap, T. (2019). LOGAN: Latent Optimisation for Generative Adversarial Networks (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1912.00953. 7. You, A., Kim, J. K., Ryu, I. H., & Yoo, T. K. (2022). Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye and vision (London, England), 9(1), 6. Presentations are communication tools that can be used as demonstrations, lectures, speeches, reports, and more. 8. Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2023). GluGAN: Generating Personalized Glucose Time Series Using Generative Adversarial Networks. IEEE journal of biomedical and health informatics, 27(10), 5122-5133. https://doi.org/10.1109/JBHI.2023.3271615 |