Title |
Combustion Space Modelling of Oxy-Fuel Fired Glass Melter |
Creator |
Richter, Wolfgang ; Kobayashi, Hisashi |
Publisher |
Digitized by J. Willard Marriott Library, University of Utah |
Date |
1990 |
Spatial Coverage |
presented at San Francisco, California |
Abstract |
A three-dimensional heat transfer code based on the zonal method was applied to evaluate the oxygen-fuel firing of a crossfired regenerative glass melter. A furnace end section which includes the bridge wall and a pair of the regenerator ports was modelled in detail for a base air case and several oxy-fuel firing cases. The firing rates of two oxy-fuel burners that matched the heat flux distribution of the base air case were determined. The effects of the height and angle of the oxy-fuel burners on the temperature and heat flux distributions were predicted to evaluate the optimum burner placement of the oxyfuel burners. The main conclusions of the simulation are that; (1) in spite of the small flame diameters, the high momentum low flame temperature oxy-fuel burners can create temperature and heat flux distributions equivalent to those of the base air case with a wide flame and (2) both lower burner elevation and angling of the oxy-fuel burners toward the glass surface tend to increase heat transfer to glass surface and reduce the peak refractory temperatures. |
Type |
Text |
Format |
application/pdf |
Language |
eng |
Rights |
This material may be protected by copyright. Permission required for use in any form. For further information please contact the American Flame Research Committee. |
Conversion Specifications |
Original scanned with Canon EOS-1Ds Mark II, 16.7 megapixel digital camera and saved as 400 ppi uncompressed TIFF, 16 bit depth. |
Scanning Technician |
Cliodhna Davis |
ARK |
ark:/87278/s6vm4ft4 |
Setname |
uu_afrc |
ID |
6301 |
Reference URL |
https://collections.lib.utah.edu/ark:/87278/s6vm4ft4 |