Skin stretch feedback to guide hand motions

Update Item Information
Title Skin stretch feedback to guide hand motions
Publication Type dissertation
School or College College of Engineering
Department Computing
Author Guinan, Ashley Lara
Date 2016
Description When interacting with objects, humans utilize their sense of touch to provide information about the object and surroundings. However, in video games, virtual reality, and training exercises, humans do not always have information available through the sense of touch. Several types of haptic feedback devices have been created to provide touch information in these scenarios. This dissertation describes the use of tactile skin stretch feedback to provide cues that convey direction information to a user. The direction cues can be used to guide a user or provide information about the environment. The tactile skin stretch feedback devices described herein provide feedback directly to the hands, just as in many real life interactions involving the sense of touch. The devices utilize a moving tactor (actuated skin contact surface, also called a contactor) and surrounding material to give the user a sense of the relative motion. Several game controller prototypes with skin stretch feedback embedded into the device to interface with the fingers were constructed. Experiments were conducted to evaluate user performance in moving the joysticks to match the direction of the stimulus. These experiments investigated stimulus masking effects with both skin stretch feedback and vibrotactile feedback. A controller with feedback on the thumb joysticks was found to have higher user accuracy. Next, precision grip and power grip skin stretch feedback devices were created to investigate cues to convey motion in a three-dimensional space. Experiments were conducted to compare the two devices and to explore user accuracy in identifying different direction cue types. The precision grip device was found to be superior in communicating direction cues to users in four degrees of freedom. Finally, closed-loop control was implemented to guide users to a specific location and orientation within a three-dimensional space. Experiments were conducted to improve controller feedback which in turn improved user performance. Experiments were also conducted to investigate the feasibility of providing multiple cues in succession, in order to guide a user with multiple motions of the hand. It was found that users can successfully reach multiple target locations and orientations in succession.
Type Text
Publisher University of Utah
Subject haptic perception; haptics; human computer interaction; human device interaction; human interaction; robotic feedback
Dissertation Name Doctor of Philosophy
Language eng
Rights Management ¬©Ashley Lara Guinan
Format application/pdf
Format Medium application/pdf
ARK ark:/87278/s6m08d94
Setname ir_etd
ID 1370819
Reference URL https://collections.lib.utah.edu/ark:/87278/s6m08d94