Title | Practical implications of prior research on today's questions about flare emissions |
Creator | Seebold, J.G. |
Publication type | presentation |
Publisher | American Flame Research Committee (AFRC) |
Program | American Flame Research Committee (AFRC) |
Date | 2004 |
Type | Text |
Format | application/pdf |
Language | eng |
OCR Text | Show 2004 American Flame Research Committee Conference n j A p p l i c a t i o n s o f C o m b u s t i o n F u n d a m e n t a l s t o P r a c t i c a l P r o b l e m s - M arch 1&-19, 2004 - Salt Lake City P r a c tic a l I m p lic a tio n s o f P rio r R e s e a r c h o n T o d a y 's Q u e s t i o n s a b o u t F la re E m i s s i o n s James G. Seebold ChevronTexaco (Retired) 2004 American Flame Research Committee Conference u U N IV E R S IT Y THE ACERC UTAH BYU BRtGHAM YQL NCi OM V [ K i tTK REACT ON ENG NIT RING international N e v e r t h e le s s . . . C H 4 + 2 O 2 " T h is d is c u s s d o e s ^ C O 2 m o r n in g c h e m + w e is t r y n o t h a p p e n 2 H 2O w ill t h a t ..." Fred Lockwood, Imperial College, London; Start of Introductory Lecture, Combustion 101 C o m b u s tio n R e s e a r c h F a c ility , S a n d ia N a tio n a l L a b o r a to r ie s , L iv e r m o r e , C a lifo r n ia Baby BERL - Refinery Fuel Gas & Methane Pure as the Drifted Snow Benzene A Benzene ♦ Toluene O Toluene - C o n c e n tra tio n 1 ppm Refinery Fuel Gas Laboratory Grade Methane Refinery Fuel Gas Laboratory Grade Methane 1 ppb 1 ppt 0 .7 0 .8 0 .9 1 1 .1 1 .2 1 .3 S to ic h io m e tric Ratio 1 .4 1 .5 1 .6 B en z e n e C H 2 (s) + C 2H 2 C 2H 4 + C 2H 3 A C H 2C H C H C H 2 +H 2C C C H 7 +H H 2C C C H +C H 3 3 -H 2 < ■ hC 4H 5 -C H 2 C H C C H 2 H 2C C C C H 3 A A (C = C -O C an d C -C = C = C ) 9 +H -H +H C 3 H 4 (a lE e n e ) + H 2C C C H or -H 2 I+ H C 3H 5 +H 2C C C C H 3 (a lly !) 1 C 2H 3+C H 3 H 2 C = C = C IR H 2 C -C -C R R " H (p ro p arg y f- H 2C C C H ) B ran ch ed R " C H 3 (1 -m e th y la lle n y l ~ H 2 0 0 C 0 H 3 ) A ro m a tic s T o lu e n e , O -X y le n e C o m p a riso n o f C o m p u te d S tirre d R e a c to r R e su lts w ith A ir T o x ic M e a s u r e m e n t s (Stirred Reactor, 1500K, 10 msec, 1/6 H2) J ______ I______ i______ .______ 1______.______ !______ .______J_____ -i______ I - -L , Open symbols; Edwards and Goix Closed symbols: CDFB Sequence E M o le F ra c tio n -c6h6 - -c6h5ch3 ----- -ch3c6h4ch3 ------ -c6h5c2h5 0 Benzene A Toluene Ethyl Benzene □ 0 tot Xylene Benzene ♦ A Toluene # Xylene tot - j- 10 20 30 40 50 60 P ercen t r | 70 r p - 80 r ^ 90 T h e o re tic a l i [ r p 100110120130 A ir PAH's (+ C2H2) 19 Propargyl Radicals Self-Combine H2C=C=CH or H2C-C=CH ■ ► 10 11 + H ■(phenyl) + 02 o CO 12 ■■ 13 * (cyclopentadienyl) (naphthoxy) O 15 , 0 0 ' 16 m (indenyl) (phenoxy) (naphthalene) +H+H - 7." 14 + H 20 -O PAH's (+ C2H2) + 02 (naphthyl) CO •o 17 +H+ H ^ (phenanthrene) M 18 (anthracene) Comparison of Computed Stirred Reactor Results with Air Toxic Measurements (Stirred R e a c to r, 1500K, 10 m s e c , 1/6 H2) 1 0 N a p th a le n e ■5 1 0 T o tal 4 -R in g PA H M o le F ra c tio n 1 0 S y m b o ls: C D F B 1o P h e n a n th re n e 7 S equence E and B 12' -8 1 0 -9 • 1 0 1o 10 11 ] 1 0 O 1 12 1 0 10 20 30 40 50 60 P e rc e n t 70 80 90 T h e o re tic a l 1 0 0 1 1 0 1 2 0 1 3 0 A ir C o m b u s tio n R e s e a r c h F a c ility , S a n d ia N a tio n a l L a b o r a to r ie s , L iv e r m o r e , C a lifo r n ia _ j__ L W l 6 J " B IG B E R L " Burner Engineering Research Laboratory Combustion Research Facility Sandia National Laboratories Livermore, California S u b s to ic h io m e tr ic R e f in e r y F u e l G a s "BIGBERL" Burner Engineering Research Laboratory Combustion Research Facility Sandia National Laboratories Livermore, California (16% Hydrogen, 7% Propane, 77% Natural G as) 1 p p m .Q tt tt O 21 ppb ■ Total PAH ^ Benzo(a)pyrene +c* o o c o o 1 ppt 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 Stoichiometric Ratio 1.1 1 .2 1 .3 1 .4 Wake-Dominated Mixing in Elevated Flares Potential source o f substoichiometric eddies? I Wake Behind a S u p e r s t o ic h io m e t r ic R e fin e r y F u el G a s (16% Hydrogen, 7% Propane, 77% Natural G as) (p p b ) 1 p p m C o n c e n tra tio n o □ "BIGBERL" Burner Engineering Research Laboratory a Combustion Research Facility Sandia National Laboratories Livermore, California 1 ppb • Formaldehyde Benzene 1 ■ ppt Total PAH O Ethylene □ 0 Propylene 1 2 3 S to ic h io m e tr ic R a tio 4 5 Steam-Dominated Mixing in Elevated Flares Potential source o f superstoichiometric eddies? F la r e e m is s io n k n o w le d g e th a t w e H A V E to d a y ... R e a c tin g F lo w M ixing R e g im e s wake-stabSzed buoyancy-dominated mefHa-dommated (momentum flu x^ m om en tu m flux)wind increasing Combustion Efficiency vs. Momentum Flux Ratio Combustion Efficiency 1.00 0.95 0.90 ♦ ♦ _ 0.85 ♦ ♦ R e f : R e a ctio n E fficien cy o f In d u stria l F la res - T he P e rsp e c tiv e o f th e P a st, J. G. S e e b o ld , B. C. D a v is , P. E. G. G o g o le k , L. W. K o s tiu k , J. H. P o h l, R. E. S c h w a rtz , N . R. S o e lb e rg , M . S tr o s h e r a n d P. M . W alsh , C o m b u s t i o n C a n a d a 03 , V a n co u v e r, B C , S e p te m b e r 2 0 0 3 0.80 0.75 10-3 1 Q -2 10-1 100 101 102 ( P V 2 ) j e t / ( p V 2 )w in d 103 104 105 106 Combustion Efficiency vs. Steam Injection 100 I ♦ ♦ ♦ 95 90 85 ♦ 80 75 70 65 R e f : R e a ctio n E fficien cy o f In d u stria l F la res - T he P e rsp e c tiv e o f th e P a st, J. G. S e e b o ld , B. C. D a v is , P. E. G. G o g o le k , L. W. K o s tiu k , J. H. P o h l, R. E. S c h w a rtz , N . R. S o e lb e rg , M . S tr o s h e r a n d P. M . W alsh , C o m b u s t i o n C a n a d a 03 , V a n co u v e r, B C , S e p te m b e r 2 0 0 3 1 1 1 1 2 ^ ▼ 1 3 1 4 1 5 Ib-steam/lb-hydrocarbon 1 6 7 K e y f la r e e m is s io n k n o w le d g e t h a t w e d o N O T h a v e to d a y ... 1) To w h a t e x te n t a re p rio r re s e a rc h re s u lts on offs to ic h io m e tric je t-m ix e d diffusion in d ic a tiv e o f th e em issions from e le v a te d fla re s th a t m ig h t n o t b e w ell-o p erated ? 2) L ik e je t-m ix e d burners, can e le v a te d fla re s b e o p e ra te d in such a w a y th a t th e y p o se no th re a t w h a ts o e v e r to p u b lic h e alth ? O ff-S to ic h io m e tric Je t-M ix e d C o m b u s tio n N a tu ra l G a s a t C o n s ta n t H e a tin g V a lu e a n d P r e s s u r e 100 ppm ( n o n e o f t h e s e c o m p o u n d s w e r e p r e s e n t in t h e f u e l) benzene formaldehyde 10 ppm ethylene toluene 1 ppm 100 ppb propylene Severely Over-Aerated (SR >> 1) benzene Severely Under-Aerated (SR << 1) benzo(a)pyrene 10 0pb R e f: The Origin and Fate o f Toxic Combustion Byproducts in Refinery Heaters: Research to Enable Efficient C om pliance with the Clean Air Act, Petroleum Environmental Research Forum Project 92-19, Final Report, August 1997 Wake-Dominated Mixing in Elevated Flares Potential source o f substoichiometric eddies? I Wake Behind a IM Steam-Dominated Mixing in Elevated Flares Potential source o f superstoichiometric eddies? H o w w ill w e G E T t h e k e y f la r e e m is s io n k n o w le d g e t h a t w e d o n o t h a v e to d a y to s u p p o r t s e n s ib le r e g u la tio n ? The effect of FLARE GAS FLOW & COMPOSITION STEAM ASSIST & FLARE GAS MASS RATIO WIND & FLARE GAS MOMENTUM FLUX RATIO WIND TURBULENCE STRUCTURE on the COMBUSTION EFFICIENCY OF FLARE FLAMES focusing on speciated emissions of the HIGHLY REACTIVE VOLATILE ORGANIC COMPOUNDS (ethylene, propylene, butadiene) and the class archetypal HAZARDOUS AIR POLLUTANT CARCINOGENS (formaldehyde, benzene, benzo(a)pyrene) John Pohl, Virginia Tech, Alexandria, VA Peter Gogolek, CANMET, Ottawa, Canada Robert Schwartz, John Zink Company, Tulsa, OK James Seebold, ChevronTexaco (Ret), Atherton, CA T e c h n ic a l o r r e g u la to r y d r iv e r s □ Emissions from flares in the Houston Galveston Area (particularly of the highly reactive volatile organic compounds like butadiene, propylene and ethylene) are currently of great interest to the Texas Commission on Environmental Quality and to the industrial community. □ The same can be said of California's South Coast and Bay Area A ir Quality Management Districts and the industrial community there and elsewhere. □ The Global Flare Reduction Initiative seeks to reduce the emissions of greenhouse gases from flares. □ This program will provide a much-needed check on and validation o f remote measurement techniques which may develop to monitor flare flames. □ If development of remote techniques to measure flare combustion is delayed, or if remote measurement techniques are found to lack practicality or adequate detection limits, this program will provide independent and unambiguous resolution of today's pressing issues. T i m i n g Y ear 1 2 3 Phase I Task I.1 Kickoff Meeting Form T A B ----Task I.2 Lit. Review Task I.3 P ro g re ss Review & Planning for Wind a nd Efficiency C am p aig n s E quipm ent Task I.4 W ind Task I.5 P ro g re ss Review & Planning for 1st Efficiency C am paign Completion P ro g re ss Review & Final Report Structure Combustion Efficiency Task I.6 P h a s e I Final Report & Planning for P h a s e II Presentation and Advise Task I.7 Phase I Final R eport P h ase II Task II.1 Stability Literature Task II.2 Experimental Conditions Task II.3 P ro g re ss Review & lanning for 2 nd Efficiency C am paign Completion Combustion Efficiency Task II.4 Reporting P h a s e I I I (TBD & not included) Full-scale verification & validation of remote measurement technique at the John Z ink Flare Test Facility Final Report Presentation Initial Scoping M atrix - CANMET Flare Test Facility Fuels: 1 = natural gas; 2 = refinery fuel gas (naturalgas, hydrogen, propanemix); 3 = ethylene spiked natural gas; 4 = propylene spiked natural gas; 5 = BTEXspiked natural gas; 6 = low-Btu gas (carbondioxide, natural gas mix) Measure: all fuels - combustion efficiency and concentrations of ethylene, propylene, butadiene, formaldehyde, benzene, total PAH; add for fuels 3-5 - destruction efficiency of spiked compound <D (0 3 A3: 1, 2, 3, 4, 5, 6 30 J? 10 CM > a t 3 £ A2: 1, 2, 3, 1 4, 5, 6 o C2:1, 2 C4:1, 2 C6:1, 2 B1:1, 2, 3, 4 B2:1, 2, 3, 4 B3: 1, 2, 3, 4 C1:1, 2 C3: 1, 2 C5:1, 2 X 3 EE 0.3 E ij 0.1 0 1 s 0 A1: 1, 2, 3, 4, 5, 6 0 0.25 0.5 1 2 30 Steam Injection, lb-steam/lb-flared 100 T i m i n g Y ear 1 2 3 Phase I Task I.1 Kickoff Meeting Form T A B ----Task I.2 Lit. Review Task I.3 P ro g re ss Review & Planning for Wind a nd Efficiency C am p aig n s E quipm ent Task I.4 P ro g re ss Review & Planning for 1st Efficiency C am paign Completion W ind Task I.5 P ro g re ss Review & Final Report Structure Combustion Efficiency Task I.6 Presentation and Advise Initial Scoping Matrix P h a s e I Final Report & Planning for P h a s e II Task I.7 Phase I Final R eport P h ase II Task II.1 Stability Literature Task II.2 Experimental Conditions Task II.3 P ro g re ss Review & lan-ning for 2 nd Efficiency C am paign Completion Combustion Efficiency Task II.4 Reporting P h a s e I I I (TBD & not included) Full-scale verification & validation of remote measurement technique at the John Z ink Flare Test Facility Final Report Presentation |
ARK | ark:/87278/s6005493 |
Relation has part | Seebold, J. G. (2004). Practical implications of prior research on today's questions about flare emissions. American Flame Research Committee (AFRC). |
Format medium | application/pdf |
Rights management | (c)American Flame Research Committee (AFRC) |
Setname | uu_afrc |
ID | 1527070 |
Reference URL | https://collections.lib.utah.edu/ark:/87278/s6005493 |