Intuitive telemanipulation of micromanipulators with piezoelectric stick-slip actuators with application in retinal surgery

Update item information
Publication Type dissertation
School or College College of Engineering
Department Mechanical Engineering
Author Nambi, Manikantan
Title Intuitive telemanipulation of micromanipulators with piezoelectric stick-slip actuators with application in retinal surgery
Date 2015
Description In this dissertation, we present methods for intuitive telemanipulation of manipulators that use piezoelectric stick-slip actuators (PSSAs). Commercial micro/nano-manipulators, which utilize PSSAs to achieve high precision over a large workspace, are typically controlled by a human operator at the joint level, leading to unintuitive and time-consuming telemanipulation. Prior work has considered the use of computer-vision-feedback to close a control loop for improved performance, but computer-vision-feedback is not a viable option for many end users. We discuss how open-loop models of the micro/nano-manipulator can be used to achieve desired end-effector movements, and we explain the process of obtaining open-loop models. We propose a rate-control telemanipulation method that utilizes the obtained model, and we experimentally quantify the effectiveness of the method using a common commercial manipulator (the Kleindiek MM3A). The utility of open-loop control methods for PSSAs with a human in the loop depends directly on the accuracy of the open-loop models of the manipulator. Prior research has shown that modeling of piezoelectric actuators is not a trivial task as they are known to suffer from nonlinearities that degrade their performance. We study the effect of static (non-inertial) loads on a prismatic and a rotary PSSA, and obtain a model relating the step size of the actuator to the load. The actuator-specific parameters of the model are calibrated by taking measurements in specific configurations of the manipulator. Results comparing the obtained model to experimental data are presented. PSSAs have properties that make them desirable over traditional DC-motor actuators for use in retinal surgery. We present a telemanipulation system for retinal surgery that uses a full range of existing disposable instruments. The system uses a PSSA-based manipulator that is compact and light enough that it could reasonably be made head-mounted to passively compensate for head movements. Two mechanisms are presented that enable the system to use existing disposable actuated instruments, and an instrument adapter enables quick-change of instruments during surgery. A custom stylus for a haptic interface enables intuitive and ergonomic telemanipulation of actuated instruments. Experimental results with a force-sensitive phantom eye show that telemanipulated surgery results in reduced forces on the retina compared to manual surgery, and training with the system results in improved performance. Finally, we evaluate operator efficiency with different haptic-interface kinematics for telemanipulated retinal surgery. Surgical procedures of the retina require precise manipulation of instruments inserted through trocars in the sclera. Telemanipulated robotic systems have been developed to improve retinal surgery, but there is not a unique mapping of the motions of the surgeon's hand to the lower-dimensional motions of the instrument through the trocar. We study operator performance during a precision positioning task on a force-sensing phantom retina, reminiscent of telemanipulated retinal surgery, with three common haptic-interface kinematics implemented in software on a PHANTOM Premium 6DOF haptic interface. Results from a study with 12 human subjects show that overall performance is best with the kinematics that represent a compact and inexpensive option, and that subjects' subjective preference agrees with the objective performance results.
Type Text
Publisher University of Utah
Subject Haptics; Retinal surgery; Robot-assisted surgery; Stick-Slip Actuators; Teleoperation
Dissertation Name Doctor of Philosophy
Language eng
Rights Management ©Manikantan Nambi
Format Medium application/pdf
Format Extent 28,087 bytes
Identifier etd3/id/4034
ARK ark:/87278/s6vx3qw2
Setname ir_etd
Date Created 2016-08-03
Date Modified 2017-11-28
ID 197584
Reference URL