Molecular design and nanoscale engineering of organic nanofibril donor-acceptor heterojunctions

Update Item Information
Publication Type dissertation
School or College College of Engineering
Department Materials Science & Engineering
Author Huang, Helin
Title Molecular design and nanoscale engineering of organic nanofibril donor-acceptor heterojunctions
Date 2014-08
Description Organic nanofibril heterojunction materials have gained increasing research interest due to their broad applications in organic semiconductor devices. In order to enhance the device performance, we have investigated the structure-property relationship of these nanostructures by designing and synthesizing functional building block molecules, selfassembling the molecules into well-defined nanofibers, fabricating the nanofibers into optical and electrical devices, and testing their photoconductivity and sensor properties. In Chapter 2, we present a simple approach to fabricate efficient nanofibril heterojunctions by interfacial engineering of electron donor (D) coating onto acceptor (A) nanofibers. The nanofibers both create a large D/A interface for increased charge separation and act as long-range transport pathways for photogenerated charge carriers towards the electrodes, and the alkyl groups modified at the A molecules not only enable effective surface adsorption of D molecules on the nanofibers for effective electron-transfer communication, but also spatially separate the photogenerated charge carriers to prevent their recombination. In Chapter 3, we further investigated the effect of D molecular structure and coating morphology on photoconductivity of organic nanofiber materials. A series of D molecules with varying side-chain modifications were synthesized and investigated for the different intermolecular arrangements caused by π-π stacking in balance with steric hindrance of side-chains. Different molecular assemblies of D resulted in distinctive phase segregation between D and A nanofiber, which significantly affects the interfacial charge separation. In Chapter 4, we developed an alternative nanofibril heterojunction structure that is composed of D as the nanofiber, onto which a monolayer of A molecule was coated. Due to the strong redox (charge transfer) interaction between D and A, the nanofibril junction demonstrated high conductivity even without light illumination, which makes this material suitable for applications in chemiresistor sensors for detection of amines. In Chapter 5, a series of perylene tetracarboxylic monoimides were synthesized through a one-step reaction between cycloalkyl amines and the parent perylene dianhydride. The selection of appropriate reaction medium is the most critical for achieving the high purity of product. This approach opens up a new way for large scale production of the monoimides, which are the precursor for making a variety of perylene based building block molecules.
Type Text
Publisher University of Utah
Dissertation Institution University of Utah
Dissertation Name Doctor of Philosophy
Language eng
Rights Management Copyright © Helin Huang 2014
Format Medium application/pdf
Format Extent 2,181,160 bytes
Identifier etd3/id/3195
ARK ark:/87278/s64j3pcm
Setname ir_etd
ID 196761
Reference URL https://collections.lib.utah.edu/ark:/87278/s64j3pcm
Back to Search Results