Formal verification of device drivers in embedded systems

Update Item Information
Publication Type dissertation
School or College College of Engineering
Department Computing
Author Duan, Jianjun
Title Formal verification of device drivers in embedded systems
Date 2013-12
Description Embedded systems are often deployed in a variety of mission-critical fields, such as car control systems, the artificial pace maker, and the Mars rover. There is usually significant monetary value or human safety associated with such systems. It is thus desirable to prove that they work as intended or at least do not behave in a harmful way. There has been considerable effort to prove the correctness of embedded systems. However, most of this effort is based on the assumption that embedded systems do not have any peripheral devices and interrupt handling. This is too idealistic because embedded systems typically depend on some peripheral devices to provide their functionality, and in most cases these peripheral devices interact with the processor core through interrupts so that the system can support multiple devices in a real time fashion. My research, which focuses on constrained embedded systems, provides a framework for verifying realistic device driver software at the machine code level. The research has two parts. In the first part of my research, I created an abstract device model that can be plugged into an existing formal semantics for an instruction set architecture. Then I instantiated the abstract model with a model for the serial port for a real embedded processor, and plugged it into the ARM6 instruction set architecture (ISA) model from the University of Cambridge, and verified full correctness of a polling-based open source driver for the serial port. In the second part, I expanded the abstract device model and the serial port model to support interrupts, modified the latest ARMv7 model from the University of Cambridge to be compatible with the abstract device model, and extended the Hoare logic from the University of Cambridge to support hardware interrupt handling. Using this extended tool chain, I verified full correctness of an interrupt-driven open source driver for the serial port. To the best of my knowledge, this is the first full correctness verification of an interrupt-driven device driver. It is also the first time a device driver with inherent timing constraints has been fully verified. Besides the proof of full correctness for realistic serial port drivers, this research produced an abstract device model, a formal specification of the circular bu er at assembly level, a formal specification for the serial port, a formal ARM system-on-chip (SoC) model which can be extended by plugging in device models, and the inference rules to reason about interrupt-driven programs.
Type Text
Publisher University of Utah
Subject Device; Driver; Formal; Interrupt; Verification
Dissertation Institution University of Utah
Dissertation Name Doctor of Philosophy
Language eng
Rights Management Copyright © Jianjun Duan 2013
Format Medium application/pdf
Format Extent 1,211,666 bytes
Identifier etd3/id/2622
ARK ark:/87278/s60p4752
Setname ir_etd
ID 196197
Reference URL https://collections.lib.utah.edu/ark:/87278/s60p4752
Back to Search Results