Dirichlet's Theorem and L-functions

Update item information
Publication Type thesis
School or College College of Science
Department Mathematics
Author Snellman, Robbie
Title Dirichlet's Theorem and L-functions
Date 2010-03-12
Description Dirichlet's Theorem states that given any two relatively prime positive integers a, m, there are infinitely-many primes p in the arithmetic progression a + mk where k is any nonnegative integer. This thesis will start with an introduction to the foundations of algebra, number theory, and analysis, and will build on these concepts to introduce the advanced concepts used in the proof of Dirichlet's Theorem.
Type Text
Publisher University of Utah
Subject Dirichlet principle
Dissertation Institution University of Utah
Dissertation Name Honors BS
Language eng
Relation is Version of Digital reproduction of "Dirichlet's Theorem and L-functions" J. Willard Marriott Library Special Collections QA3.5 2010 .S64
Rights Management © Robbie Snellman
Format Medium application/pdf
Format Extent 45,398 bytes
Identifier us-etd2,165808
Source Original: University of Utah J. Willard Marriott Library Special Collections
Conversion Specifications Original scanned on Epson GT-30000 as 400 dpi to pdf using ABBYY FineReader 9.0 Professional Edition.
ARK ark:/87278/s6cn7jkc
Setname ir_etd
Date Created 2012-04-23
Date Modified 2018-03-23
ID 194131
Reference URL https://collections.lib.utah.edu/ark:/87278/s6cn7jkc