Computational silicon nanophotonic design

Update Item Information
Publication Type dissertation
School or College College of Engineering
Department Electrical & Computer Engineering
Author Shen, Bing
Title Computational silicon nanophotonic design
Date 2017
Description Photonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 Ã- 3 m2, an integrated polarization beamsplitter with footprint 2.4 Ã- 2.4 m2, and a waveguide bend with effective bend radius as small as 0.65 m. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as /2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm.
Type Text
Publisher University of Utah
Subject diffractive optics; nanophotonics
Dissertation Name Doctor of Philosophy
Language eng
Rights Management ©Bing Shen
Format Medium application/pdf
ARK ark:/87278/s67t1t1q
Setname ir_etd
ID 1345248
Reference URL https://collections.lib.utah.edu/ark:/87278/s67t1t1q
Back to Search Results