Picking a fight with water, and water lost ... an electron

Update Item Information
Publication Type dissertation
School or College College of Science
Department Chemistry
Author Herr, Jonathan D
Title Picking a fight with water, and water lost ... an electron
Date 2017
Description The global need for energy is increasing, as is the importance of producing energy by green and renewable methodologies. This document outlines a research program dedicated to investigating a possible source for this form of energy generation and storage: solar fuels. The photon-induced splitting of water into molecular hydrogen and oxygen is currently hindered by large overpotentials from the oxidation half-reaction of water-splitting. This study concentrated on fundamental models of water-spitting chemistry, using a physical and computational chemistry analysis. The oxidation was first explored via ab initio electronic structure calculations of bare cationic water clusters, comprised of 2 to 21 molecules, in order to determine key electronic interactions that facilitate oxidation. Deeper understanding of these interactions could serve as guides for the development of viable water oxidation catalysts (WOC) designed to reduce overpotentials. The cationic water cluster study was followed by an investigation into hydrated copper (I) clusters, which acted as precursor models for real WOCs. Analyzing how the copper ion perturbed the properties of water clusters led to important electronic considerations for the development of WOCs, such as copper-water interactions that go beyond simple electrostatics. The importance of diagnostic thermodynamic properties, as well as anharmonic characteristics being persistent throughout oxidized water clusters, necessitated the use of quantum and classical molecular dynamics (MD) routines. Therefore, two new methods for accelerating computationally demanding classical and quantum MD methods were developed to increase their accessibility. The first method utilized a new form of electronic extrapolation â€" a linear prediction routine incorporating a Burg minimization â€" to decrease the iterations required for solving the electronic equations throughout the dynamics. The second method utilized a multiple-timestepping description of the potential energy term in the path integral molecular dynamics (PIMD) formalism. This method led to reductions of computational time by allowing the use of less computationally laborious methods for portions of the simulation and resulted in negligible increase of error. The determination of the fundamental driving forces within water oxidation and the development of acceleration techniques for important electronic structure methods will help drive progress into fully solar-initiated water oxidation.
Type Text
Publisher University of Utah
Subject cationic water; copper catalyst; linear prediction; multiple-timestepping; water clusters; water oxidation
Dissertation Name Doctor of Philosophy
Language eng
Rights Management ©Jonathan D Herr
Format Medium application/pdf
ARK ark:/87278/s6n05br9
Setname ir_etd
ID 1345140
Reference URL https://collections.lib.utah.edu/ark:/87278/s6n05br9
Back to Search Results