| References |
1. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167-175. 2. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, Mahendiran T, Moraes G, Shamdas M, Kern C, Ledsam JR, Schmid MK, Balaskas K, Topol EJ, Bachmann LM, Keane PA, Denniston AK. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health. 2019;1:e271-e297. 3. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, Topol EJ, Ioannidis JPA, Collins GS, Maruthappu M. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. 4. Bruce BB, Lamirel C, Wright DW, Ward A, Heilpern KL, Biousse V, Newman NJ. Nonmydriatic ocular fundus photography in the emergency department. N Engl J Med. 2011;364:387-389. 5. Biousse V, Bruce BB, Newman NJ. Ophthalmoscopy in the 21st century: the 2017 H. Houston Merritt lecture. Neurology. 2018;90:167-175. 6. Biousse V, Newman NJ. Diagnosis and clinical features of common optic neuropathies. Lancet Neurol. 2016;15:1355-1367. 7. Bruce BB, Bidot S, Hage R, Clough LC, Fajoles-Vasseneix C, Melomed M, Keadey MT, Wright DW, Newman NJ, Biousse V. Fundus photography vs. ophthalmoscopy outcomes in the emergency department (FOTO-ED) phase III: web-based, in-service training of emergency providers. Neuroophthalmol. 2018;42:269-274. 8. Rathi S, Tsui E, Mehta N, Zahid S, Schuman JS. The current state of teleophthalmology in the United States. Ophthalmology. 2017;124:1729-1734. 9. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, Aghsaei Fard M, Fonseca P, Vanikieti K, Lagreze WA, La Morgia C, Cheung CY, Hamann S, Chiquet C, Sanda N, Yang H, Mejico LJ, Rougier MB, Kho R, Tran TH, Singhal S, Gohier P, Clermont-Vignal C, Cheng CY, Jonas JB, Yu-Wai-Man P, Fraser CL, Chen JJ, Ambika S, Miller NR, Liu Y, Newman NJ, Wong TY, Biousse V. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687-1695. 10. Biousse V, Newman NJ, Najjar RP, Vasseneix C, Xu X, Ting DS, Milea LB, Hwang J, Kim DH, Yang HK, Hamann S, Chen JJ, Liu Y, Wong TY, Milea D, Ronde‐Courbis B, Gohier P, Biousse V, Newman NJ, Vasseneix C, Miller N, Padungkiatsagul T, Poonyathalang A, Suwan Y, Vanikieti K, Milea LB, Amore G, Barboni P, Carbonelli M, Carelli V, La Morgia C, Romagnoli M, Rougier M, Ambika S, Komma S, Fonseca P, Raimundo M, Hamann S, Karlesand I, Alexander Lagreze W, Sanda N, Thumann G, Aptel F, Chiquet C, Liu K, Yang H, Chan CK, Chan NC, Cheung CY, Chau Tran TH, Acheson J, Habib MS, Jurkute N, Yu‐Wai‐Man P, Kho R, Jonas JB, Chen JJ, Sabbagh N, Vignal‐Clermont C, Hage R, Khanna RK, Hwang J, Kim DH, Yang HK, Aung T, Cheng C, Lamoureux E, Loo JL, Milea D, Najjar RP, Singhal S, Ting D, Tow S, Vasseneix C, Wong TY, Liu Y, Xu X, Jiang Z, Fraser CL, Mejico LJ, Fard MA; for the BONSAI Brain and Optic Nerve Study with Artificial Intelligence Study Group. Optic disc classification by deep learning versus expert neuro‐ophthalmologists. Ann Neurol. 2020;88:785-795. 11. Milea D, Singhal S, Najjar RP. Artificial intelligence for detection of optic disc abnormalities. Curr Opin Neurol. 2020;33:106-110. 12. Milea L, Najjar RP. Classif-Eye: A Semi-automated Image Classification Application, 2020. GitHub repository. Available at: https://github.com/milealeonard/Classif-Eye/. Accessed April 13, 2020. 13. McNemar Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 1947;12:153-157. 14. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med. 2018;1:39. 15. Rim TH, Lee G, Kim Y, Tham YC, Lee CJ, Baik SJ, Kim YA, Yu M, Deshmukh M, Lee BK, Park S, Kim HC, Sabayanagam C, Ting DSW, Wang YX, Jonas JB, Kim SS, Wong TY, Cheng CY. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digital Health. 2020;2:e526-e536. 16. Sachdeva V, Vasseneix C, Hage R, Bidot S, Clough LC, Wright DW, Newman NJ, Biousse V, Bruce BB. Optic nerve head edema among patients presenting to the emergency department. Neurology. 2018;90:e373-e379. 17. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56. 18. Jammal AA, Thompson AC, Mariottoni EB, Berchuck SI, Urata CN, Estrela T, Wakil SM, Costa VP, Medeiros FA. Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2020;211:123-131. 19. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342-1350. 20. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; for the Imaging and Informatics in Retinopathy of Prematurity i-ROP Research Consortium. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136:803-810. |