Description |
Inverse Electrocardiography (ECG) aims to noninvasively estimate the electrophysiological activity of the heart from the voltages measured at the body surface, with promising clinical applications in diagnosis and therapy. The main challenge of this emerging technique lies in its mathematical foundation: an inverse source problem governed by partial differential equations (PDEs) which is severely ill-conditioned. Essential to the success of inverse ECG are computational methods that reliably achieve accurate inverse solutions while harnessing the ever-growing complexity and realism of the bioelectric simulation. This dissertation focuses on the formulation, optimization, and solution of the inverse ECG problem based on finite element methods, consisting of two research thrusts. The first thrust explores the optimal finite element discretization specifically oriented towards the inverse ECG problem. In contrast, most existing discretization strategies are designed for forward problems and may become inappropriate for the corresponding inverse problems. Based on a Fourier analysis of how discretization relates to ill-conditioning, this work proposes refinement strategies that optimize approximation accuracy o f the inverse ECG problem while mitigating its ill-conditioning. To fulfill these strategies, two refinement techniques are developed: one uses hybrid-shaped finite elements whereas the other adapts high-order finite elements. The second research thrust involves a new methodology for inverse ECG solutions called PDE-constrained optimization, an optimization framework that flexibly allows convex objectives and various physically-based constraints. This work features three contributions: (1) fulfilling optimization in the continuous space, (2) formulating rigorous finite element solutions, and (3) fulfilling subsequent numerical optimization by a primal-dual interiorpoint method tailored to the given optimization problem's specific algebraic structure. The efficacy o f this new method is shown by its application to localization o f cardiac ischemic disease, in which the method, under realistic settings, achieves promising solutions to a previously intractable inverse ECG problem involving the bidomain heart model. In summary, this dissertation advances the computational research of inverse ECG, making it evolve toward an image-based, patient-specific modality for biomedical research. |