Kinetic and mechanistic investigation of the pyrolysis of unique coal model compounds

Update Item Information
Title Kinetic and mechanistic investigation of the pyrolysis of unique coal model compounds
Publication Type dissertation
School or College College of Engineering
Department Chemical Engineering
Author Shigley, John Koeller
Date 1984-05-16
Description In an attempt to better understand the fundamental chemistry of coal pyrolysis, the pyrolysis of model compounds containing structures similar to the prominent structures of bituminous coal has been studied. These compounds have been pyrolyzed in the temperature range 588 to 723 K (315 to 450°C) under isothermal constant volume batch reaction conditions. Experiments were conducted, depending on the temperature and model compound, at times from one to two-hundred forty minutes. Pyrolysis product mixtures were analyzed by gas chromatography and gas chromatography/mass spectrometry. The compounds successfully studied include 9-benzyl-l, 2, 3, 4-tetrahydrocarbazole (9BTHC), 1-benzyl-l, 2, 3, 4- tetrahydroisoquinoline-(1BTHIQ) and 4-benzylpiperidine(4BPP). The average material balances of 9BTHC and 1BTHIQ were 96.5% and 98.3%, respectively, with that of 4BPP being slightly lower (92.9%). The principal products observed during the pyrolysis of 9BTHC were 9-benzylcarbazole (9BC), 1, 2, 3, 4-tetrahydrocarbazole (THC), carbazole (CARB) and toluene (TOL). The pyrolysis of 1BTHIQ produced 1 - benzylisoquinoline (1BIQ), 1, 2, 3, 4-tetrahydroisoquinoline (THIQ), isoquinoline (ISOQ), and TOL. Observed as 4BPP pyrolyzed were 4-benzylpyridine (4BPY), pyridine (PYD), and TOL, with other minor products of varying amounts. The pyrolysis of 9BTHC and 1BTHIQ were conducted in the liquid phase at the lower temperatures, through a mixed phase region and completely in the vapor phase at the higher temperatures. The overall reaction order varied from about two to one as this progression from liquid to vapor phase occurred. No variation in product distributions occurred as the system varied, except that the conversion dramatically increased. The stabilization of the thermally produced radicals seems to preferentially occur by hydrogen abstraction from an unreacted or partially reacted model compound molecule, rather than intramolecular rearrangement. Mathematical models were developed i n an attempt to describe the pyrolysis of 9BTHC and 1BTHIQ utilizing the 'time-concentration' integral technique. Both compounds' pyrolyses are described most effectively with models consisting of all second order reactions.
Type Text
Publisher University of Utah
Subject Coal liquefaction
Dissertation Institution University of Utah
Dissertation Name PhD
Language eng
Relation is Version of Digital reproduction of "Kinetic and mechanistic investigation of the pyrolysis of unique coal model compounds" J. Willard Marriott Library Special Collections TP 7.5 1984 S54
Rights Management © John Koeller Shigley
Format application/pdf
Format Medium application/pdf
Format Extent 34,931 bytes
Identifier us-etd2,143116
Source Original: University of Utah J. Willard Marriott Library Special Collections
Conversion Specifications Original scanned on Kirtas 2400 and saved as 400 ppi 8 bit grayscale jpeg. Display image generated in Kirtas Technologies' OCR Manager as multiple page pdf, and uploaded into CONTENT dm.
ARK ark:/87278/s6p27cpk
Setname ir_etd
ID 192575
Reference URL https://collections.lib.utah.edu/ark:/87278/s6p27cpk
Back to Search Results