Description |
Water resources are limited and disproportionately distributed in time and place. Moreover, complex interactions among different components of the water system, changes in population and urbanization growth rates, and climate change have increased the uncertainty influencing water resource planning. The ultimate question arising for water managers considering the complexity of water systems is how to determine if management strategies are effective and improve the performance of a water system. Generally, decision-makers assess the system’s condition based on a univariate measure of reliability or vulnerability. However, these measures do not deliver sufficient information, and present a limited view about the system’s performance. There is a known need to study water resources in an integrated fashion to effectively manage for the present and the future. In this dissertation, a new comprehensive integrated modeling and performance assessment framework is offered. First, a new approach is designed to assess vulnerability of a water system based on important factors including exposure, sensitivity, severity, potential severity, social vulnerability, and adaptive capacity. Then, instead of an individual metric, the joint probability distribution of reliability and vulnerability based on copula function is developed to estimate a new index, the Water System Performance Index (WSPI), to evaluate the reliability and vulnerability of a water system simultaneously. To test the effectiveness of the framework and demonstrate the advances of the new performance index, a practical application is conducted for the Salt Lake City Department of Public Utilities (SLCDPU) water system. For this purpose, an integrated water resource management (IWRM) model is developed using system dynamics approach for the case study. Management alternatives are incorporated into the model using a decision support tool designed for use by water managers and stakeholders. Results of the study show an inconsistency in the degree of vulnerability between traditionally used and the new vulnerability assessment approaches. The use of the integrated model and new vulnerability approach is also shown to provide more informative guidance for decision makers evaluating alternative management strategies during failure events. Furthermore, results illustrate the effectiveness of the WSPI to identify critical conditions when there is a need for a combined measure of performance. In terms of water management decision making, the final results of this dissertation indicate centralized water storage solutions improve water system performance better than rainwater harvesting for the Salt Lake City case study. |