Description |
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a noninvasive means of causing selective tissue necrosis using high-power ultrasound and MR temperature imaging. Inhomogeneities in the medium of propagation can cause significant distortion of the ultrasound beam, resulting in changes in focal-zone amplitude, location and shape. Current ultrasound beam simulation techniques are either only applicable to homogeneous media or are relatively slow in calculating power deposition patterns in inhomogeneous media. Further, these techniques use table-value estimates of the acoustic parameters for predicting ultrasound beam propagation in inhomogeneous media, resulting in at best an approximate power deposition pattern. This work improves numerical analysis of ultrasound beam propagation by developing techniques for: 1) fast, accurate predictions of ultrasound beam propagation in inhomogeneous media, 2) noninvasive estimation of acoustic parameters (speed of sound and attenuation coefficient) of tissue types present in inhomogeneous media, 3) noninvasive determination of changes in tissue acoustic properties due to treatment. These beam simulation techniques utilizing subject-specific tissue parameters will rapidly predict power deposition patterns in real patient geometries and estimate changes in tissue acoustic parameters during treatment, leading to treatment-responsive patientspecific treatment plans that will improve the safety, efficacy and effectiveness of MRgFUS. |