Description |
Image-based biomechanics, particularly numerical modeling using subject-specific data obtained via imaging, has proven useful for elucidating several biomechanical processes, such as prediction of deformation due to external loads, applicable to both normal function and pathophysiology of various organs. As the field evolves towards applications that stretch the limits of imaging hardware and acquisition time, the information traditionally expected as input for numerical routines often becomes incomplete or ambiguous, and requires specific acquisition and processing strategies to ensure physical accuracy and compatibility with predictive mathematical modeling. These strategies, often derivatives or specializations of traditional mechanics, effectively extend the nominal capability of medical imaging hardware providing subject-specific information coupled with the option of using the results for predictive numerical simulations. This research deals with the development of tools for extracting mechanical measurements from a finite set of imaging data and finite element analysis in the context of constructing structural atlases of the heart, understanding the biomechanics of the venous vasculature, and right ventricular failure. The tools include: (1) application of Hyperelastic Warping image registration to displacement-encoded MRI for reconstructing absolute displacement fields, (2) combination of imaging and a material parameter identification approach to measure morphology, deformation, and mechanical properties of vascular tissue, and (3) extrapolation of diffusion tensor MRI acquired at a single time point for the prediction the structural changes across the cardiac cycle with mechanical simulations. Selected tools were then applied to evaluate structural changes in a reversible animal model for right ventricular failure due to pressure overload. |