Description |
Flying rotorcraft, such as helicopters and quadrotors, can gather useful information without the need for human presence, but they consume a great deal of power and have limited on-board energy resources. Our work aims to provide a passive perching mechanism so that a rotorcraft is able to grip branch-like perches and resist external wind disturbances, using only the weight of the rotorcraft to maintain the grip. Deviating from previous bio-inspired approaches, in this thesis, we propose a mechanism that incorporates a Sarrus linkage to convert the weight of the rotorcraft into grip force. We provide an analysis of the mechanism's kinematics, we present the static force equations that describe how the weight of the rotorcraft is converted into grip force onto a cylindrical perch, and we describe how grip forces relate to the ability to reject horizontal disturbances such as wind gusts. The mechanism is then optimized for use on a single perch size, and then for a range of perch sizes. We conclude by constructing a prototype mechanism, and we demonstrate its use with a remote-controlled helicopter. |