Transsynaptic Ganglion Cell Degeneration in Adult Patients After Occipital Lobe Stroke

Update Item Information
Title Transsynaptic Ganglion Cell Degeneration in Adult Patients After Occipital Lobe Stroke
Creator L. Donaldson; M. Chen; E. Margolin
Affiliation Department of Ophthalmology and Vision Sciences (LD, EM), Faculty of Medicine, University of Toronto, Toronto, Canada; University of Western Ontario (MC), London, Canada; and Department of Medicine (EM), Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Canada
Abstract Loss of retinal ganglion cells after occipital lobe damage is known to occur through transsynaptic retrograde degeneration in congenital lesions; however, studies of this phenomenon in acquired pathology, such as strokes affecting postgenicular visual pathway, are scant. We studied a cohort of adult patients with known onset of occipital lobe stroke to look for the presence, rate, and timing of macular ganglion cell loss on optical coherence tomography.
Subject Occipital Lobe Damage; Congenital Lesions; Stroke
OCR Text Show
Date 2023-06
Date Digital 2023-06
References 1. Heimer L, Kalil R. Rapid transneuronal degeneration and death of cortical neurons following removal of the olfactory bulb in adult rats. J Comp Neurol. 1978;178, 559-609. 2. Ghetti B, Horoupian DS, Wisniewski HM. Transsynaptic response of the lateral geniculate nucleus and the pattern of degeneration of the nerve terminals in the Rhesus monkey after eye enucleation. Brain Res. 1972;45:31-48. 3. Vanburen JM. Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry. 1963;26:402-409. 4. Miller NR, Newman SA. Transsynaptic degeneration. Arch Ophthalmol. 1981;99:1654. 5. Donaldson L, Margolin E. Visual fields and optical coherence tomography (OCT) in neuro-ophthalmology: structure-function correlation. J Neurol Sci. 2021;429:118064. 6. Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135, 534-541. 7. Park HYL, Park YG, Cho AH, Park CK. Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology. 2013;120:1292-1299. 8. Goto K, Miki A, Yamashita T, Araki S, Takizawa G, Nakagawa M, Ieki Y, Kiryu J. Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefe's Archive Clin Exp Ophthalmol. 2016;254:745-756. 9. Mehta JS, Plant GT. Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. Am J Ophthalmol. 2005;140:727-729. 10. Anjos R, Vieira L, Costa L, Vicente A, Santos A, Alves N, Amado D, Ferreira J, Cunha JP. Macular ganglion cell layer and peripapillary retinal nerve fibre layer thickness in patients with unilateral posterior cerebral artery ischaemic lesion: an optical coherence tomography study. Neuro-Ophthalmology 2016;40:8-15. 11. Gunes A, Inal EE, Demirci S, Tok L, Tok O, Demirci S. Changes in retinal nerve fiber layer thickness in patients with cerebral infarction: evidence of transneuronal retrograde degeneration. Acta Neurol Belgica. 2016;116:461-466. 12. Shin HY, Park HYL, Choi JA, Park CK. Macular ganglion cell-inner plexiform layer thinning in patients with visual field defect that respects the vertical meridian. Graefe's Archive Clin Exp Ophthalmol. 2014;252:1501-1507. 13. Yamashita T, Miki A, Goto K, Araki S, Takizawa G, Ieki Y, Kiryu J, Tabuchi A, Iguchi Y, Kimura K, Yagita Y. Retinal ganglion cell atrophy in homonymous hemianopia due to acquired occipital lesions observed using Cirrus high-definition-OCT. J Ophthalmol. 2016;2016:2394957. 14. Mühlemann F, Grabe H, Fok A, Wagner F, Brugger D, Sheldon CA, Abegg M. Homonymous hemiatrophy of ganglion cell layer from retrochiasmal lesions in the visual pathway. Neurology. 2020;94:e323-e329. 15. Nouri-Mahdavi K, Fatehi N, Caprioli J. Longitudinal macular structure-function relationships in glaucoma and their sources of variability. Am J Ophthalmol. 2019;207:18-36. 16. Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M. Ocular indicators of Alzheimer's: exploring disease in the retina. Acta Neuropathologica. 2016;132:767-787. 17. Yamashita T, Miki A, Goto K, Araki S, Takizawa G, Ieki Y, Kiryu J, Tabuchi A, Iguchi Y, Kimura K, Yagita Y. Evaluation of significance maps and the analysis of the longitudinal time course of the macular ganglion cell complex thicknesses in acquired occipital homonymous hemianopia using spectral-domain optical coherence tomography. Neuro-Ophthalmology. 2020;44:236-245. 18. Purves D. The trophic theory of neural concentrations. Trends Neurosciences. 1986;9. doi: 10.1016/0166-2236(86)90155-4 19. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker MExogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006;313:1781-1784. 20. Hasegawa M, Nonaka T, Masuda-Suzukake M. Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther. 2017;172:22-33. 21. Mattson MP, Keller JN, Begley JG. Evidence for synaptic apoptosis. Exp Neurol. 1998;153:35-48. 22. Ilardi M, Nolan-Kenney R, Fatterpekar G, Hasanaj L, Serrano L, Joseph B, Wu S, Rucker JC, Balcer LJ, Galetta SL. Role for OCT in detecting hemi-macular ganglion cell layer thinning in patients with multiple sclerosis and related demyelinating diseases. J Neurol Sci. 2020;419:117159. 23. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-Lapiscina EH, Green AJ, Kardon R, Outteryck O, Paul F, Schippling S, Vermersch P, Villoslada P, Balk LJ. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16:797-812. 24. Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. 2021;69:101361. 25. Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson's disease: a systematic review and meta-analysis. Eur J Neurol. 2021;28:763-774.
Language eng
Format application/pdf
Type Text
Publication Type Journal Article
Source Journal of Neuro-Ophthalmology, June 2023, Volume 43, Issue 2
Collection Neuro-Ophthalmology Virtual Education Library: Journal of Neuro-Ophthalmology Archives: https://novel.utah.edu/jno/
Publisher Lippincott, Williams & Wilkins
Holding Institution Spencer S. Eccles Health Sciences Library, University of Utah
Rights Management © North American Neuro-Ophthalmology Society
ARK ark:/87278/s6ja9ddq
Setname ehsl_novel_jno
ID 2498932
Reference URL https://collections.lib.utah.edu/ark:/87278/s6ja9ddq
Back to Search Results