Advanced noncontrast magnetic resonance angiography of the thoracic and peripheral arteries

Update Item Information
Title Advanced noncontrast magnetic resonance angiography of the thoracic and peripheral arteries
Publication Type dissertation
School or College College of Science
Department Physics & Astronomy
Author Lindley, Marc Daniel
Date 2017
Description The gold standard for evaluation of arterial disease using MR continues to be contrast-enhanced MR angiography (MRA) with gadolinium-based contrast agents (Gd-MRA). There has been a recent resurgence in interest in methods that do not rely on gadolinium for enhancement of blood vessels due to associations Gd-MRA has with nephrogenic systemic fibrosis (NSF) in patients with impaired renal function. The risk due to NSF has been shown to be minimized when selecting the appropriate contrast type and dose. Even though the risk of NSF has been shown to be minimized, demand for noncontrast MRA has continued to rise to reduce examination cost, and improve patient comfort and ability to repeat scans. Several methods have been proposed and used to perform angiography of the aorta and peripheral arteries without the use of gadolinium. These techniques have had limitations in transmit radiofrequency field (B1+) inhomogeneities, acquisition time, and specific hardware requirements, which have stunted the utility of noncontrast enhanced MRA. In this work feasibility of noncontrast (NC) MRA at 3T of the femoral arteries using dielectric padding, and using 3D radial stack of stars and compressed sensing to accelerate acquisitions in the abdomen and thorax were tested. Imaging was performed on 13 subjects in the pelvis and thighs using high permittivity padding, and 11 in the abdomen and 19 in the thorax using 3D radial stack of stars with tiny golden angle using gold standards or previously published techniques. Qualitative scores for each study were determined by radiologists who were blinded to acquisition type. Vessel conspicuity in the thigh and pelvis showed significant increase when high permittivity padding was used in the acquisition. No significant difference in image quality was observed in the abdomen and thorax when using undersampling, except for the descending aorta in thoracic imaging. All image quality scores were determined to be of diagnostic quality. In this work it is shown that NC-MRA can be improved through the use of high permittivity dielectric padding and acquisition time can be decreased through the use of 3D radial stack of stars acquisitions.
Type Text
Publisher University of Utah
Subject LCSH MRA; MRI; Noncontrast
Dissertation Name Doctor of Philosophy
Language eng
Rights Management ©Marc Daniel Lindley
Format application/pdf
Format Medium application/pdf
ARK ark:/87278/s6cg3v98
Setname ir_etd
ID 1345142
Reference URL https://collections.lib.utah.edu/ark:/87278/s6cg3v98
Back to Search Results