Description |
China’s retail sector has undertaken tremendous transformation since its opening to foreign investment in 1992. Retail transnational corporations have expanded rapidly in this emerging market. Yet relatively little is known about how they have embedded in the Chinese market and expanded spatially and temporally. China has experienced unprecedented urbanization since the onset of economic reform in 1978. Dramatic land use and land cover (LULC) change and urban expansion have taken place in the past three decades. Detailed time-series analysis of LULC change and urban growth in Chinese cities is still scant. This dissertation focuses on the expansion of foreign hypermarket retailers in China and the urban growth in one Chinese city, Suzhou. This research analyzes the penetration strategy and local embeddedness of foreign hypermarket retailers, examines their spatial inequality and dynamics at different geographical levels, and identifies their location determinants through binary logistic regression models. This study applies random forest classification to multitemporal Landsat Thematic Mapper (TM) images of Suzhou for LULC change analysis, employs landscape metrics and Geographic Information System (GIS) analysis to investigate urban growth patterns, and develops global and local logistic regression models to identify determinants of urban growth. The results indicate that spatiotemporal expansion of foreign hypermarket retailers has been largely dictated by the gradual liberalization policy of the Chinese government. Their local embeddedness has been impacted by both home and host economies. Relative gaps in foreign hypermarkets among three macro regions are narrowing while absolute gaps are widening. Provincial foreign hypermarket distribution has shown significant clustering in the Yangtze River Delta since 2005. Their distribution in Shanghai has changed from dispersion to intensified clustering and shown a clear trend of suburbanization. This study confirms that the random forest algorithm can effectively classify the heterogeneous landscape in Suzhou and LULC change has accelerated from 1986 to 2008. Three urban growth types, edge-expansion, infilling, and leapfrog are identified. Compared with the global model, the geographically weighted logistic regression model has overall better goodness-of-fit and provides more insights to spatial variations of the influence of underlying factors on urban growth. |