Description |
Minimally invasive thermal therapy under Magnetic Resonance Imaging (MRI) guidance is becoming popular with several applications in the process of getting FDA approval. The ability to determine in near real-time the temperature map of a tumor and its surrounding tissue makes MR thermometry very attractive and well suited for thermal treatment. The proton resonance frequency shift (PRF) is currently the gold standard method for temperature monitoring using MRI. However, its incapacity to measure temperature in fatty tissue limits the scope of its applicability. The spin lattice relaxation time T1, on the other hand, has shown good temperature sensitivity and works well in all types of tissues. In this dissertation, we have addressed a number of challenges currently affecting MRI thermometry. A non-CPMG Turbo Spin Echo (TSE) sequence has been implemented to monitor the temperature rise due to the high RF power deposition inherent to this sequence at high field (3T and higher). This new implementation allows TSE sequences to be used safely without altering their high contrast properties which make them appealing in clinical settings. Tissue damage assessment during thermal therapy is critical for the safety of the patient. We have developed a new hybrid PRF-T1 sequence that has the capability to provide simultaneously in near real-time the temperature map and T1 information, which is a good indication of the state of the tissue. The simplicity and the real-time capability of the newly developed sequence make it an ideal tool for tissue damage assessment. Temperature monitoring during thermal therapy in organs with large fat content have been hindered by the lack of an MRI thermometry method that can provide simultaneous temperature in fat and aqueous tissue. A new sequence and acquisition scheme have been developed to address this issue. In sum, this dissertation proposed several pulse sequence implementation techniques and an acquisition scheme to overcome some of the limitations of MR thermometry. |