Description |
The forefront of current nanoscience initiatives includes the investigation and development of semiconducting colloidal nanocrystals for optoelectronic device concepts. Being highly facile in their synthesis, a wide range of sizes, morphologies, materials, interactions, and effects can easily be engineered by current synthetic chemists. Their solution-processability also makes available the use of long established industrial fabrication techniques such as reel-to-reel processing or even simple inkjet printing, offering the prospect of extremely cheap device manufacturing. Aside from anticipated technologies, this material class also makes available a type of "playground" for generating and observing novel quantum effects within reduced dimensions. Since the surface-to-volume ratio is very large in these systems, unsatisfied surface states are able to dominate the energetics of these particles. Although simple methods for satisfying such states are usually employed, they have proven to be only semieffective, often due to a significant change in surface stoichiometry caused by complex atomic reorganization. Serving as charge "trap" states, their effect on observables is readily seen, for instance, in single particle photoluminescence (PL) blinking. Unfortunately, most methods used to observe their influence are inherently blind to the chemical identity of these sites. In absence of such structural information, systematically engineering a robust passivation system becomes problematic. The development of pulsed optically detected magnetic resonance (pODMR) as a method for directly addressing the chemical nature of optically active charges while under trapping conditions is the primary tenet of this thesis. By taking advantage of this technique, a great wealth of knowledge becomes immediately accessible to the researcher. The first chapter of this work imparts the relevant background needed to pursue spin resonance studies in colloidal nanocrystals; the second chapter addresses technical aspects of these studies. In Chapter 3, pODMR is used to explore shallow trap states that dominate the charge transfer process in CdSe/CdS heterostructure nanocrystals. Several trapping channels are observed, while two in particular are correlated, demonstrating for the first time that both electrons and holes are able to be trapped within the same nanoparticle at the same time. The intrinsically long spin coherence lifetime for these states allows for the spin multiplicity and degree of isolation to be explored. Demonstration of novel effects is also performed, such as coherent control of the light-harvesting process and remote readout of spin information. The study presented in Chapter 4 focuses on the spin-dependencies observed in the historically ill-described emissive CdS defect. By monitoring deep-level emission from nanorods of this material, it is shown that the cluster defect can ultimately be fed by the same shallow trap states explored in Chapter 3. The degree of interaction between trap states and the cluster defect is probed. Also, a surprisingly long spin coherence lifetime (T2 « 1.6 /is) for the defect itself is observed, which opens the possibility of highly precise chemical fingerprinting through electron spin echo envelop modulation (ESEEM). This dissertation lays the groundwork for further use of these, and more powerful magnetic resonance probes of the states that fundamentally limit the practical utility of colloidal nanocrystal optoelectronics devices. Furthermore, by gaining access to these optically active electronic states, novel methods of coherent quantum control may be exerted on the energetics of this material system. |