Description |
The embedded system space is characterized by a rapid evolution in the complexity and functionality of applications. In addition, the short time-to-market nature of the business motivates the use of programmable devices capable of meeting the conflicting constraints of low-energy, high-performance, and short design times. The keys to achieving these conflicting constraints are specialization and maximally extracting available application parallelism. General purpose processors are flexible but are either too power hungry or lack the necessary performance. Application-specific integrated circuits (ASICS) efficiently meet the performance and power needs but are inflexible. Programmable domain-specific architectures (DSAs) are an attractive middle ground, but their design requires significant time, resources, and expertise in a variety of specialties, which range from application algorithms to architecture and ultimately, circuit design. This dissertation presents CoGenE, a design framework that automates the design of energy-performance-optimal DSAs for embedded systems. For a given application domain and a user-chosen initial architectural specification, CoGenE consists of a a Compiler to generate execution binary, a simulator Generator to collect performance/energy statistics, and an Explorer that modifies the current architecture to improve energy-performance-area characteristics. The above process repeats automatically until the user-specified constraints are achieved. This removes or alleviates the time needed to understand the application, manually design the DSA, and generate object code for the DSA. Thus, CoGenE is a new design methodology that represents a significant improvement in performance, energy dissipation, design time, and resources. This dissertation employs the face recognition domain to showcase a flexible architectural design methodology that creates "ASIC-like" DSAs. The DSAs are instruction set architecture (ISA)-independent and achieve good energy-performance characteristics by coscheduling the often conflicting constraints of data access, data movement, and computation through a flexible interconnect. This represents a significant increase in programming complexity and code generation time. To address this problem, the CoGenE compiler employs integer linear programming (ILP)-based 'interconnect-aware' scheduling techniques for automatic code generation. The CoGenE explorer employs an iterative technique to search the complete design space and select a set of energy-performance-optimal candidates. When compared to manual designs, results demonstrate that CoGenE produces superior designs for three application domains: face recognition, speech recognition and wireless telephony. While CoGenE is well suited to applications that exhibit a streaming behavior, multithreaded applications like ray tracing present a different but important challenge. To demonstrate its generality, CoGenE is evaluated in designing a novel multicore N-wide SIMD architecture, known as StreamRay, for the ray tracing domain. CoGenE is used to synthesize the SIMD execution cores, the compiler that generates the application binary, and the interconnection subsystem. Further, separating address and data computations in space reduces data movement and contention for resources, thereby significantly improving performance compared to existing ray tracing approaches. |