Description |
This work seeks to improve upon existing methods for device-free localization (DFL) using radio frequency (RF) sensor networks. Device-free localization is the process of determining the location of a target object, typically a person, without the need for a device to be with the object to aid in localization. An RF sensor network measures changes to radio propagation caused by the presence of a person to locate that person. We show how existing methods which use either wideband or narrowband RF channels can be improved in ways including localization accuracy, energy efficiency, and system cost. We also show how wideband and narrowband systems can combine their information to improve localization. A common assumption in ultra-wideband research is that to estimate the bistatic delay or range, "background subtraction" is effective at removing clutter and must first be performed. Another assumption commonly made is that after background subtraction, each individual multipath component caused by a person's presence can be distinguished perfectly. We show that these assumptions are often not true and that ranging can still be performed even when these assumptions are not true. We propose modeling the difference between a current set of channel impulse responses (CIR) and a set of calibration CIRs as a hidden Markov model (HMM) and show the effectiveness of this model over background subtraction. The methods for performing device-free localization by using ultra-wideband (UWB) measurements and by using received signal strength (RSS) measurements are often considered separate topic of research and viewed only in isolation by two different communities of researchers. We consider both of these methods together and propose methods for combining the information obtained from UWB and RSS measurements. We show that using both methods in conjunction is more effective than either method on its own, especially in a setting where radio placement is constrained. It has been shown that for RSS-based DFL, measuring on multiple channels improves localization accuracy. We consider the trade-o s of measuring all radio links on all channels and the energy and latency expense of making the additional measurements required when sampling multiple channels. We also show the benefits of allowing multiple radios to transmit simultaneously, or in parallel, to better measure the available radio links. |