Description |
In wireless sensor networks, knowing the location of the wireless sensors is critical in many remote sensing and location-based applications, from asset tracking, and structural monitoring to geographical routing. For a majority of these applications, received signal strength (RSS)-based localization algorithms are a cost effective and viable solution. However, RSS measurements vary unpredictably because of fading, the shadowing caused by presence of walls and obstacles in the path, and non-isotropic antenna gain patterns, which affect the performance of the RSS-based localization algorithms. This dissertation aims to provide efficient models for the measured RSS and use the lessons learned from these models to develop and evaluate efficient localization algorithms. The first contribution of this dissertation is to model the correlation in shadowing across link pairs. We propose a non-site specific statistical joint path loss model between a set of static nodes. Radio links that are geographically proximate often experience similar environmental shadowing effects and thus have correlated shadowing. Using a large number of multi-hop network measurements in an ensemble of indoor and outdoor environments, we show statistically significant correlations among shadowing experienced on different links in the network. Finally, we analyze multihop paths in three and four node networks using both correlated and independent shadowing models and show that independent shadowing models can underestimate the probability of route failure by a factor of two or greater. Second, we study a special class of algorithms, called kernel-based localization algorithms, that use kernel methods as a tool for learning correlation between the RSS measurements. Kernel methods simplify RSS-based localization algorithms by providing a means to learn the complicated relationship between RSS measurements and position. We present a common mathematical framework for kernel-based localization algorithms to study and compare the performance of four different kernel-based localization algorithms from the literature. We show via simulations and an extensive measurement data set that kernel-based localization algorithms can perform better than model-based algorithms. Results show that kernel methods can achieve an RMSE up to 55% lower than a model-based algorithm. Finally, we propose a novel distance estimator for estimating the distance between two nodes a and b using indirect link measurements, which are the measurements made between a and k, for k ? b and b and k, for k ? a. Traditionally, distance estimators use only direct link measurement, which is the pairwise measurement between the nodes a and b. The results show that the estimator that uses indirect link measurements enables better distance estimation than the estimator that uses direct link measurements. |