Description |
Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures - the dipole antenna, bullseye nanoaperture and nanoaperture array - has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ∼3.5× have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been experimentally demonstrated for the first time. Lifetime reduction as a function of aperture size and native quantum yield has been accurately predicted by simulation. Simulation further predicts greater net fluorescence enhancement for tryptophan compared to p-terphenyl. In order to increase fluorescence enhancement, the "poor" molecules and structures with proper undercuts are required. Third, UV lifetime modification by Mg nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ∼13× have been observed for the laser dye p-terphenyl with high QY in a 50 nm diameter aperture with 125 nm undercut. In addition, extraordinary optical transmission of Mg nanohole arrays in the UV has been measured for the first time. By using Al as a reference, the feasibility of applying Mg in the UV plasmonic applications has been evaluated both numerically and experimentally. Finally, this work has established a methodology for the study of plasmonic enhancement of UV fluorescence, including design method, thin-film characterization, nanofabrication with focus ion beam milling, and fluorescence measurement. It has paved the way for more extensive research on UV fluorescence enhancement. |