Reducing loss in implantable and spacecraft antenna systems

Update Item Information
Title Reducing loss in implantable and spacecraft antenna systems
Publication Type dissertation
School or College College of Engineering
Department Electrical & Computer Engineering
Author Chrysler, Andrew Michael
Date 2018
Description Antenna design and reduction of losses in antenna systems are critical for modern communications systems. Two categories of antennas suffer from limited power supply and difficult operating environments: implantable antennas and antennas for spacecraft applications. Minimizing and controlling losses in these two antenna types is critical for developing next-generation implantable devices, spacecraft, and satellites. Research suggests that future tattoo antennas will be made from low-conductivity ink utilizing the natural insulating property of the body's fat and lossy ground plane of muscle. This paper supports tattoo antenna work by: (1) demonstrating the insulating properties of fat and conductivity of muscle with various antenna systems, (2) showing the effect of biological materials on the current distribution of subdermal antennas, and (3) validating the use of lower-conductivity materials in subdermal antenna design including a novel gold nanoparticle material. Simulations and measurements are used to evaluate current distributions shared between solid, segmented, and meshed strip dipole antennas and surrounding body tissues. Fat insulates the antenna similar to a thin layer of plastic wrap. Muscle acts as a conductive ground plane. Dipole antennas with mesh or gap structures are more strongly coupled to body tissues than solid antennas. A minimum acceptable conductivity benchmark of 105 S/m is established for dipole antennas and Radio-Frequency Identification (RFID) antennas. This work also provides novel information on the design of low-cost, circularly polarized (CP), Ka-band (26 GHz), millimeter-wave, 50 Ω edge-fed, corners truncated patch antennas on RT/duroid 5880 (εr = 2.2, ½ oz. copper cladding). Microstrip feed width, axial ratio (AR) bandwidth, and best AR at 26 GHz are optimized by the use of 10 mil substrate. The effects of corner truncation are further investigated, showing that increasing corner truncation increases AR bandwidth, increases percent offset between best S11 and AR frequencies, and worsens the best AR. A truncation of 0.57 mm is a good compromise between these effects with AR bandwidth of 6.17 % (measured) and 1.37 % (simulated). Increasing ratio of substrate thickness to design frequency, t / λd, improves AR bandwidth. For t / λd below a certain threshold a corners truncated patch antenna will not produce CP. A new nearly-square, corners truncated patch antenna is measured and simulated as a method of increasing circular polarization bandwidth (CPBW).
Type Text
Publisher University of Utah
Subject Electromagnetics; Electrical engineering
Dissertation Name Doctor of Philosophy
Language eng
Rights Management (c) Andrew Michael Chrysler
Format application/pdf
Format Medium application/pdf
ARK ark:/87278/s63n72h6
Setname ir_etd
ID 1496345
Reference URL https://collections.lib.utah.edu/ark:/87278/s63n72h6
Back to Search Results