Description |
Computing and data acquisition have become an integral part of everyday life. From reading emails on cell phones to kids playing with motion sensing game consoles, we are surrounded with sensors and mobile computing devices. As the availability of powerful computing devices increases, applications in previously limited environments become possible. Training devices in rehabilitation are becoming increasingly common and more mobile. Community based rehabilitative devices are emerging that embrace these mobile advances. To further the flexibility of devices used in rehabilitation, research has explored the use of smartphones as a means to process data and provide feedback to the user. In combination with sensor embedded insoles, smartphones provide a powerful tool for the clinician in gathering data and as a standalone training tool in rehabilitation. This thesis presents the continuing research of sensor based insoles, feedback systems and increasing the capabilities of the Adaptive Real-Time Instrumentation System for Tread Imbalance Correction, or ARTISTIC, with the introduction of ARTISTIC 2.0. To increase the capabilities of the ARTISTIC an Inertial Measurement Unit (IMU) was added, which gave the system the ability to quantify the motion of the gait cycle and, more specifically, determine stride length. The number of sensors in the insole was increased from two to ten, as well as placing the microprocessor and a vibratory motor in the insole. The transmission box weight was reduced by over 50 percent and the volume by over 60 percent. Stride length was validated against a motion capture system and found the average stride length to be within 2.7 ± 6.9 percent. To continue the improvement of the ARTISTIC 2.0, future work will include implementing real-time stride length feedback. |