The sequential bond energies of $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes, where $x=1-6$, are determined by threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer equipped with an electrospray ionization source. The electrospray source produces an initial distribution of $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes, where $x=6-9$. Smaller $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes, where $x=1-5$, are accessed using a recently developed in-source fragmentation technique that takes place in the high pressure region of a rf-only hexapole ion guide. This work constitutes the first experimental study for the complete inner shell of any multiply charged ion. The kinetic energy dependent cross sections are determined over a wide energy range to monitor all possible dissociation products and are modeled to obtain 0 and 298 K binding energies for loss of a single water molecule. These binding energies decrease monotonically for the $\text{Sr}^{2+}(\text{H}_2\text{O})$ complex to $\text{Sr}^{2+}(\text{H}_2\text{O})_6$. Our experimental results agree well with previous literature results obtained by equilibrium and kinetic studies for $x=5$ and 6. Because there has been limited theory for the hydration of Sr^{2+}, we also present an in-depth theoretical study on the energetics of the $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ systems by employing several levels of theory with multiple effective core potentials for Sr and different basis sets for the water molecules.

I. INTRODUCTION

Water is an essential component in all forms of life. Bulk water forms an intricate hydrogen bonding network that becomes disrupted in the presence of metal cations as the electronegative oxygen atoms are directed toward the positively charged metal center. The ionic radius of the metal cation determines the number of water molecules that coordinate directly to the metal cation in the inner hydration shell as well as the binding affinities of those water molecules. Once the inner shell is filled, additional water molecules interact with these inner shell water molecules through hydrogen bonds. Investigating metal ion hydration in the gas phase provides a suitable environment to acquire fundamental thermodynamic information of these important metal ion-water interactions, which cannot be determined in the liquid phase.

Gas-phase studies of hydrated alkaline earth metal dications have become attractive systems for experimentalists as these ions can be generated readily with electrospray ionization (ESI)1-7 The hydration energies for $\text{Sr}^{2+}(\text{H}_2\text{O})_x$, where $x=5-14$, have been determined previously by equilibrium experiments using high pressure mass spectrometry3 (HPMS) and kinetic studies using blackbody infrared dissociation (BIRD).5 The thermodynamics for the more tightly bound water molecules ($x=1-4$) have not been determined as these smaller complexes pose a significant experimental challenge to such temperature-dependent techniques. Alternatively, guided ion beam mass spectrometry8 lends itself to this problem because the reactivity of ion-molecule complexes is investigated as a function of kinetic energy, which can be varied over a much broader range than temperature.

The present work comprises a complete experimental investigation of the hydration energies of $\text{Sr}^{2+}(\text{H}_2\text{O})_x$, where $x=1-6$, using threshold collision-induced dissociation (TCID). $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ ions are formed readily using ESI, but can also be generated in a dc discharge flow tube ion source (DC/FT)9 Because strontium’s second ionization energy (11.0 eV) lies below the first ionization energy of water (12.6 eV),10 association of Sr^{2+} with H_2O in the flow tube can form $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes whereas charge transfer would otherwise dominate the interaction. Qualitative comparisons are made between TCID results from $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes generated with both the ESI and DC/FT sources, which demonstrates that the ESI source provides more reliable quantitative results.

Compared to the number of theoretical studies of $\text{Mg}^{2+}(\text{H}_2\text{O})_x$ and $\text{Ca}^{2+}(\text{H}_2\text{O})_x$ complexes, relatively little has been done for the $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes. Glendening and Feller11 have performed geometry optimizations and single point energies on $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes, where $x=1-6$. Independent studies by Klobukowski,12 Bauschlicher and co-workers,13 and Kaupp and Schleyer14 have determined binding energies for Sr^{2+} bound to $x=1-4$, $x=1-3$, and $x=1-2$ water molecules, respectively, using a variety of basis set treatments. The present work includes a rigorous theoretical assessment of the binding enthalpies of all $\text{Sr}^{2+}(\text{H}_2\text{O})_x$ complexes studied here utilizing two different effective core potentials (ECPs) on Sr. By employing multiple levels of theory with different basis set treatments for the $\text{Sr}^{2+}(\text{H}_2\text{O})_x$
system, we are able to determine specific combinations that are capable of reproducing our experimental hydration energies for these tightly bound water molecules. Such agreement provides additional support for the successful application of TCID studies for such multiply charged systems as well as confirmation that the ESI source produces thermalized ions.

II. EXPERIMENTAL AND COMPUTATIONAL SECTION

A. General experimental procedures

Cross sections for the CID of Sr$^{2+}$(H$_2$O)$_x$, complexes are measured using a guided ion beam tandem mass spectrometer (GIBMS), which has been described in detail previously.8,9 Hydrated complexes are produced using an ESI source16,17 by syringe pumping a 10$^{-4}$M solution of SrCl$_2$ dissolved in high performance liquid chromatography (HPLC) water through a 35 gauge stainless steel electrospray emitter set to ~2000 V with respect to an inlet cap, which serves as the counterelectrode. Ions are first passed through a heated capillary set at 80 °C and subsequently injected into an ion funnel.18 The ion funnel transmits ions through the high pressure region of the source via a gentle dc voltage gradient and radially focuses the ions into a tight beam via opposite phases of radio frequency (rf) voltage on adjacent ion funnel plates. Ions are then injected into a rf-only hexapole where the ions undergo multiple collisions ($>$104) with the ambient gas and become thermalized. The internal energies of reactant ions produced by the ESI source can be described by a Maxwell–Boltzmann distribution at 300 K, as characterized by previous experiments and the results below.$^{17,19-21}$

The ESI source produces an initial distribution of Sr$^{2+}$(H$_2$O)$_x$, complexes in which $x=6$–9 are formed with reasonable intensity. Smaller Sr$^{2+}$(H$_2$O)$_x$, complexes, where $x=1$–5, are produced via an in-source fragmentation technique that takes place in the high pressure region of the hexapole ion guide, as described previously for the Ca$^{2+}$(H$_2$O)$_x$, system.22 Briefly, this technique utilizes negative voltages on a set of 0.25 in. dc electrodes placed between the hexapole rods to induce fragmentation of the initial distribution. The electrode assembly produces smaller Sr$^{2+}$(H$_2$O)$_x$, complexes under conditions that have been shown to form thermalized complexes at 300 K.22 This conclusion is also tested below.

Sr$^{2+}$(H$_2$O)$_x$, where $x=1$–6, could also be generated using a DC/FT.9 In the DC/FT source, strontium dications are generated at the cathode, a tantalum boat filled with the strontium metal located at the head of a 1 m long flow tube, by using a continuous dc discharge with typical operating conditions of 1.9–2.2 kV and 10–20 mA. The metal dications are carried down the flow tube by a buffer gas (ca. 10% argon in helium) with normal operating pressures of 0.3–0.4 Torr. About 50 cm downstream from the discharge, water vapor is introduced into the flow tube and the complexes of interest are formed via three-body associative reactions in the flow of the He/Ar carrier gas. For singly charged species, complex ions formed in the DC/FT source are thermalized to 300 K (the temperature of the flow tube) by undergoing ~105 collisions with the buffer gases as they drift along the 1 m long flow tube.$^{23-30}$

Sr$^{2+}$(H$_2$O)$_x$ ions are extracted from the source and mass selected using a magnetic momentum analyzer. Ions are then decelerated to well-defined kinetic energies and focused into a rf octopole ion guide, trapping the ions radially.8,31,32 The octopole minimizes reactant and product ion loss resulting from scattering. The octopole passes through a collision cell containing the collision gas, xenon, which is used for reasons outlined elsewhere.33,34 Product ions formed in these collisions and unreacted parent ions drift to the end of the octopole where they are focused, mass selected using a quadrupole mass filter, and detected by a scintillation ion detector capable of single ion counting.35

Ion intensities are converted to absolute cross sections as described previously.8 The uncertainty in the absolute cross sections is estimated at ±20%. In the octopole region, ions are accelerated by V_{lab}, the voltage difference between the dc bias on the octopole ion guide and the ion source. Because the ions are doubly charged, their kinetic energy in the laboratory frame is twice this voltage, $E_{lab}=2V_{lab}$. Energies in the laboratory frame (Lab) are converted to center-of-mass (CM) collision energies by $E_{CM}=E_{lab}	imes m/(m+M)$, where m and M represent the mass of the neutral collision gas and ionic reactant, respectively. The absolute zero of energy for the ion beam is determined using a retarding potential technique.5 The derivative of the transmission curve, which describes the kinetic energy distribution of the reactant ion beam, is then fit to a Gaussian distribution with a full width at half-maximum (FWHM) ranging from 0.10 to 0.15 eV. The uncertainty in the absolute energy scale is 0.05 eV (Laboratory). All energies in this paper are in the CM frame unless specified otherwise.

B. Thermochemical analysis

The kinetic energy dependent cross sections for single water molecule loss from a parent Sr$^{2+}$(H$_2$O)$_x$, complex are modeled using the empirical threshold model shown in Eq. (1):

$$\sigma(E) = \sigma_0 \sum g_i (E + E_i - E_q)^n / E,$$
(1)

where σ_0 is an energy independent scaling factor, E is the relative translational energy of the ion, E_q is the reaction threshold at 0 K, and n is an adjustable fitting parameter that describes the efficiency of the energy transfer upon collision.15 The summation is over the rovibrational states of the reactants having excitation energies, E_i, and populations, g_i, where $\Sigma g_i=1$. Vibrational frequencies and rotational constants are taken from the ab initio calculations discussed below. The Beyer–Swinehart–Stein–Rabinovich algorithm is used to evaluate the internal energy distribution for the reactants.$^{36-39}$ The relative populations, g_i, are computed for a Maxwell–Boltzmann distribution at 300 K.

To produce accurate thermochemical data from the modeling of the CID process, we must consider a number of effects such as those arising from multiple collisions, lifetime effects, and energy distributions. To ensure rigorous
single collision conditions, cross sections are obtained at multiple pressures of Xe, typically 0.20, 0.10, and 0.05 mTorr in these studies, and extrapolated to zero pressure cross sections. As the Sr$^{2+}$(H$_2$O)$_A$ ions become larger, ions with energy in excess of the threshold energy may not have time to dissociate on the time scale of the experiment, τ, about 5×10^{-4} s. This leads to a kinetic shift in the energy threshold obtained from our modeling. To account for this effect, we incorporate Rice–Ramperger–Kassel–Marcus (RRKM) statistical theory 45,46 for unimolecular dissociation into Eq. (1), as discussed in detail previously43,45 and shown in Eq. (2).

$$\sigma(E) = \left(\frac{n\sigma_g}{E} \right) \sum_{E_1, E_0} \int_{E_0}^{E} \left[1 - e^{-k(E + E_1)} \right] (E - \varepsilon)^{s-1} dE.$$ \hspace{1cm} (2)

Here, ε represents the energy deposited into the ion upon collision with xenon and $k(e + E_1) = k(E^*)$ is the RRKM unimolecular dissociation rate constant shown in Eq. (3).

$$k(E^*) = sN_\text{rot}(E^* - E_0)/\hbar\rho_{\text{rot}}(E^*).$$ \hspace{1cm} (3)

Here s is the reaction degeneracy calculated from the ratio of rotational symmetry numbers of the reactants with respect to the products, $N_\text{rot}(E^* - E_0)$ is the sum of the rovibrational states of the transition state (TS) at an energy $E^* - E_0$ above the threshold, and $\rho_{\text{rot}}(E^*)$ is the density of rovibrational states for the energized molecule (EM) at the energy available, E^*. When the rate constant is much faster than the average experimental time scale, Eq. (2) reduces to Eq. (1). The integration in Eq. (2) is over the excitation energy distribution, which is a function of the impact parameter between the ion and xenon gas. Equation (2) has been shown to accurately describe kinetic shifts in a number of previous CID experiments.$^{19-21,29,30,46-49}$

The calculation of the RRKM unimolecular rate constant requires the rovibrational states of the EM and TS.43,44,45 The molecular parameters for the EM are taken from ab initio calculations of the reactant ion. The TS is assumed to be loose with no reverse activation barrier, as is appropriate for the heterolytic bond cleavages studied here.50 Thus, the phase-space limit (PSL) TS is productlike using molecular parameters taken from ab initio calculations of the products. For the Sr$^{2+}$(H$_2$O)$_A$ complexes, the transitional modes, those that become rotations of the dissociated products, are treated as rotors and calculated from the rotational constants of the separate dissociation products, Sr$^{2+}$(H$_2$O)$_A$ and H$_2$O. The external rotational constants and rotational energy of the TS are determined by assuming that the TS is located at the centrifugal barrier for the interaction of Sr$^{2+}$(H$_2$O)$_A$ and H$_2$O, and calculated using a variational approach as outlined elsewhere.45 The data analysis program used (CRUNCH) accurately accounts for the charge on the ion in determining the location of the centrifugal barrier. The two-dimensional (2D) external rotations are treated adiabatically, but include centrifugal effects.51 Here, the adiabatic 2D external rotational energy of the EM is calculated using a statistical distribution with an explicit summation over the possible values of the rotational quantum number.15

The model CID cross sections of Eqs. (1) and (2) are convoluted over the kinetic energy distributions of the Sr$^{2+}$(H$_2$O)$_A$ complex and xenon gas, then compared with the experimental cross sections.4 A nonlinear least-squares fitting procedure is used to optimize the fitting parameters, a_0, n, and E_p. Because E_p represents the minimum amount of energy required to go from reactants to products at 0 K, this reaction threshold represents the binding energy of the water molecule to the complex. This assumes that there are no activation barriers beyond the endothermicity of the reaction, which is ordinarily the case for heterolytic bond cleavages such as those studied here.52 The uncertainties in the modeling parameters are determined from additional modeling of the cross sections by scaling the ab initio vibrational frequencies up and down by 10%, varying the best fit n value up and down by 0.1, and if lifetime effects are taken into account, by scaling the average experimental time available for dissociation up and down by a factor of 2. The absolute uncertainty of the energy scale (0.05 eV laboratory) is also included in the uncertainties for E_p.

C. Computational details

Calculations were performed with GAUSSIAN03 (Ref. 52) unless specified otherwise. Geometries determined previously for Ca$^{2+}$(H$_2$O)$_A$ complexes7 served as starting structures for the Sr$^{2+}$(H$_2$O)$_A$ complexes. For the Sr$^{2+}$(H$_2$O)$_A$ complexes, geometry optimizations were performed at the B3LYP53,54 level of theory with the HW7/6-311+G(d,p) basis set. Here, the HW7 indicates that Sr was described using an ECP and valence basis set from Hay and Wadt55 with a single d polarization function (exponent of 0.40) added. Water molecules were treated with the 6-31+1+G(d,p) basis set. For comparison, geometry optimizations were also performed with three additional levels of theory: B3LYP/SD/6-311+G(d,p), B3LYP/Def2TZVP, and BH&HLYP/Def2TZVPP. The former uses the Stuttgart-Dresden (SD)ECP and basis set for Sr developed by Kaupp et al.56 and the 6-31+1+G(d,p) basis set for water, whereas in the latter, all atoms are represented by the Def2TZVPP basis set,57 a balanced set of triple zeta+polarization functions quality that also uses the SD ECP for Sr, or the Def2TZVPP basis set that includes extra valence functions for Sr and H atoms, but none for O atoms. Both ECPs in this work utilize a small core of 28 electrons. Vibrational frequencies and rotational constants were also calculated with these basis set treatments. Frequencies were scaled by 0.989 to calculate zero-point energy and thermal corrections.58 Single point energies were subsequently calculated at the B3LYP, BP86,59 MP2(full),60 and M06 (Ref. 61) levels using the HW7/6-311+G(2d,2p) (HW*), SD/6-311+G(2d,2p) (SD), and Def2TZVPP basis sets. M06 single point energies were calculated using NWChem.62 Basis set superposition errors (BSSE) corrections in the bond dissociation energies were calculated using the full counterpoise (cp) method.63,64

Relaxed potential energy surface and synchronous transit-guided quasi-Newton calculations were also per-
formed to map out the reaction coordinates of the charge separation process from Sr2+(H$_2$O)$_2$. TSs and intermediate structures were optimized at the B3LYP/HW*//6-311+G(d,p), B3LYP/SD//6-311+G(d,p), and B3LYP/Def2TZVP levels of theory. Single point energies of TS and intermediate structures were calculated at the B3LYP and MP2(full) levels with the HW*/6-311+G(2d,2p), SD//6-311+G(2d,2p), and Def2TZVPP basis sets. All energies include zero point energy (ZPE) corrections.

III. RESULTS

A. Cross sections for collision-induced dissociation

The CID cross sections for Sr2+(H$_2$O)$_x$, where $x=1-6$, are shown in Fig. 1. In all cases, the dominant reaction is the loss of a single water molecule, as shown in reaction (4).

$$
\text{Sr}^2+(\text{H}_2\text{O})_x + Xe \rightarrow \text{Sr}^2+(\text{H}_2\text{O})_{x-1} + \text{H}_2\text{O} + Xe.
$$

At higher kinetic energies, water molecules are sequentially lost until the bare metal ion appears. For the CID of Sr2+(H$_2$O)$_4$, Sr2+(H$_2$O)$_5$, and Sr2+(H$_2$O)$_6$, the energy range was not large enough to observe the Sr$^2+$ ion with appreciable intensity. A proton transfer/charge separation process from the Sr2+(H$_2$O)$_2$ complex, reaction (5), is observed in the CID of Sr2+(H$_2$O)$_2$ and Sr2+(H$_2$O)$_3$.

$$
\text{Sr}^2+(\text{H}_2\text{O})_x + Xe \rightarrow \text{SrOH}^+ + \text{H}_2\text{O}^+ + Xe,
$$

but no other complexes are observed to undergo such a process. The product cross sections of SrOH$^+$ and H$_2$O$^+$ ions have a higher apparent threshold than the Sr2+(H$_2$O) product cross section with amplitudes that are smaller by two orders of magnitude. These charge separated products could only be observed efficiently at Xe pressures somewhat higher than those normally used (~0.25 mTorr for $x=2$ and ~0.40 mTorr for $x=3$). No other products were observed besides those described above.

B. Comparison of CID cross sections for ions generated with ESI and DC/FT sources

In addition to the CID of Sr2+(H$_2$O)$_x$, complexes generated by the ESI source, CID studies of Sr2+(H$_2$O)$_x$ ions, where $x=1-6$, were carried out for ions generated with a DC/FT. Intensities for $x=4-6$ were reasonably large and decreased appreciably for smaller complexes. Comparisons of the total CID cross sections obtained using these two sources are shown in Fig. 2 for $x=1-4$. Comparisons for $x=5$ and 6 can be found in supporting information, Fig. S1. In general, the CID cross sections for ions generated with the ESI source are considerably cleaner than those generated with the DC/FT source and rise sharply from zero. For $x=1$, the DC/FT product cross section is shifted to lower kinetic energies with respect to the ESI product cross section, which indicates dissociation proceeds from Sr2+(H$_2$O)$_x$ complexes that could not dissipate excess internal energy acquired in the association process forming the ions. Like $x=1$, the DC/FT total cross section for $x=2$ is shifted to lower energies with respect to the ESI cross section but also includes a low energy feature from 0.0 to 1.2 eV. Such low energy features may indicate the presence of a small population of high energy conformers within the ion beam. With only two water molecules complexed to Sr$^2+$, this high energy conformer can only correspond to a structure in which the second water molecule is located in the second solvent shell and hydrogen bonds to the inner shell water molecule. These low energy tails closely resemble features that can be purposely introduced using the in-source fragmentation technique. For $x=3$, the low energy feature persists, but the DC/FT and ESI total cross sections are comparable from 1.3 to 5.0 eV. Assuming the low energy feature is attributed to a high energy conformer in the ion beam, the agreement in the two cross sections indicates that the low energy conformer in the ion beam has an internal energy distribution similar to that for ions generated with ESI. The DC/FT and ESI cross sections for the Sr2+(H$_2$O)$_4$ complex are similar, Fig. 2, although the DC/FT cross section magnitude is about half that of the ESI cross section (a result that can probably be attributed to incomplete collection of product ions in the DC/FT data). For $x=5$ and 6, the DC/FT and ESI cross sections are comparable in magnitude but the former has low energy tails that could either be from hot ions or alternate conformations. Overall, these comparisons indicate that the ESI source generates Sr2+(H$_2$O)$_x$ complexes consisting of single conformations that are well thermalized. The flow tube source, which generally has been found to produce well-thermalized singly charged ions, is apparently limited in its ability to dissociate the association energies of doubly charged ions.

C. Thermochemical results

The total dissociation cross sections from ESI generated ions were modeled using Eqs. (1) and (2) for all Sr2+(H$_2$O)$_x$ complexes. The total cross section is modeled because the overall shapes of the cross sections for reaction (4) are influenced by sequential dissociation of additional water molecules. The optimum modeling parameters obtained are listed in Table I and the models of Eq. (2) are compared to zero pressure-extrapolated cross sections in Fig. 3 for Sr2+(H$_2$O)$_x$, where $x=1-6$. The model of Eq. (2) reproduces the experimental data well from threshold to 10.0, 7.0, 5.0, 4.0, 3.5, and 2.0 eV for $x=1-6$, respectively. For Sr2+(H$_2$O)–Sr2+(H$_2$O)$_6$, the kinetic shift between E_0 values modeled with and without consideration of lifetime effects [Eqs. (2) and (1), respectively] gradually increases from 0.00 to 0.17 eV. In Fig. 3, the solid lines represent the model of Eq. (2) convoluted over the kinetic and internal energy distribution of the reactants, whereas the dashed lines represent the model without kinetic energy broadening or internal energy of the reactants. The energy difference between these two lines is largely a measure of the internal energy of the reactant complex at 300 K. It can be seen that the internal energy of the Sr2+(H$_2$O) complex is small, but systematically increases for larger Sr2+(H$_2$O)$_x$ complexes. This is attributable to the relatively floppy motions in such metal-ligand donor-acceptor bonding.
D. Theoretical geometries of ground state $x=1–6$ structures

Geometry optimizations and frequency calculations were performed at B3LYP/HW*/6-311+G(d,p), B3LYP/SD/6-311+G(d,p), B3LYP/Def2TZVP, and BH&HLYP/Def2TZVPP levels of theory for $\text{Sr}^2^+(\text{H}_2\text{O})_x$ complexes. Structural details for $\text{Sr}^2^+(\text{H}_2\text{O})_x$ complexes at these three levels of theory are provided in Supporting Information, Tables SI–SIII. Geometrical parameters do not change significantly between these three levels of theory, e.g., the Sr–O distances for a specific $\text{Sr}^2^+(\text{H}_2\text{O})_x$ complex are within 0.005 Å of one another at all levels. The structures...
for \(x = 1 - 6 \) are shown in Fig. 4. In all cases, the dipole moment of the water ligand is directed toward the charged metal center. The Sr–O distances increase systematically by 0.033 ± 0.003 Å in going from \(x = 1 \) to \(x = 6 \), Fig. 4.

The \(\text{Sr}^{2+}(\text{H}_2\text{O})_2 \) complex has \(C_{2v} \) symmetry as expected. The \(\text{Sr}^{2+}(\text{H}_2\text{O})_2 \) complex has \(C_2 \) symmetry and is bent with an O–Sr–O angle between 117.0° and 119.5° depending on the level of theory. A bent geometry has also been calculated for the lowest energy \(\text{Ca}^{2+}(\text{H}_2\text{O})_2 \) structure with O–Ca–O angles of 124.7° and 125.8° at the B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(d,p) levels of theory, respectively, whereas \(\text{Mg}^{2+}(\text{H}_2\text{O})_2 \) complexes prefer a linear geometry with \(D_{2d} \) symmetry. This structural difference is attributed to the larger core polarization of \(\text{Sr}^{2+} \) and \(\text{Ca}^{2+} \), which compensates for the larger ligand-ligand repulsions in the bent geometry. We find the lowest energy \(\text{Sr}^{2+}(\text{H}_2\text{O})_3 \) complex has \(C_3 \) symmetry, whereas the lowest energy \(\text{Ca}^{2+}(\text{H}_2\text{O})_3 \) and \(\text{Mg}^{2+}(\text{H}_2\text{O})_3 \) complexes adopt \(D_3 \) symmetries, in which all heavy atoms are located in the same plane. In the \(C_3 \) geometry, the \(\text{Sr}^{2+} \) ion is located above a plane containing the oxygen atoms of the three water molecules with O–Sr–O angles between 113° and 118°. This

![Graphs showing total cross sections for collision-induced dissociation of Sr\(^{2+}(\text{H}_2\text{O})_x\), \(x = 1-6 \).](image)

FIG. 2. Comparison of total cross sections for collision-induced dissociation of \(\text{Sr}^{2+}(\text{H}_2\text{O})_x \), where \(x = 1 - 4 \) (parts a–d, respectively) with xenon for ions generated with the ESI source (solid symbols) and DC/IPT source (open symbols).
pyramidal structure has also been attributed to the larger core polarization of Sr$^{2+}$. The structures of Sr$^{2+}$(H$_2$O)$_4$, Sr$^{2+}$(H$_2$O)$_5$, and Sr$^{2+}$(H$_2$O)$_6$ have S_4, C_2v, and T_d symmetries and geometries similar to their calcium analogs. In all cases, ligands are placed to minimize ligand-ligand repulsion but also to take advantage of weak hydrogen bonding between adjacent ligands.

E. Conversion from 0 to 298 K

$\Delta H_{298} - \Delta H_0$ and ΔS_{298} values. Table II, are calculated with a rigid rotor/harmonic oscillator approximation using the vibrational frequencies and rotational constants calculated at the B3LYP/HW$^*/6-311+G(d,p)$ level of theory. The uncertainties for these values are found by scaling the vibrational frequencies up and down by 10%. These conver-
FIG. 4. Structures for Sr2+(H\textsubscript{2}O), where \(x = 1-6\). Bond lengths (angstrom) and bond angles (degrees) shown are calculated at the B3LYP/Def2TZVP level.

Theoretical bond enthalpies

Theoretical bond enthalpies for losing a single water molecule from all Sr2+(H\textsubscript{2}O)\textsubscript{x} complexes are listed in Table III. These enthalpies include ZPE and thermal corrections to 298 K both with and without cp corrections. Single point energies were calculated at the B3LYP, B3P86, MP2(full), and M06 levels with \(\text{HW}^*\), \(\text{SD}\), and \(\text{DeOTZVPP}\) basis sets from geometry optimizations using B3LYP/\(\text{HW}^*/6-311^+\text{G(d,p)}\), B3LYP/\(\text{SD}/6-311^+\text{G(d,p)}\), and B3LYP/DeOTZVPP levels of theory. Regardless of the basis set treatment, the B3LYP and B3P86 single point calculations produce almost identical binding enthalpies, differing by no more than 2 kJ/mol. MP2(full) results provide lower binding enthalpies for \(x = 1-4\) for \(\text{HW}^*\) (by 3-11 kJ/mol) and \(\text{SD}\) (3-11 kJ/mol) and \(\text{DeOTZVPP}\) (3-9 kJ/mol) basis sets with respect to B3LYP single point energies, but higher enthalpies by 4-8 kJ/mol for \(x = 5\) and 6 for all basis sets. For \(x = 1-4\), the M06 energies are 1-4 kJ/mol higher, 0-1 kJ/mol higher, and 1-2 lower than B3LYP energies calculated with the \(\text{HW}^*\), \(\text{SD}\), and \(\text{DeOTZVPP}\) basis sets, respectively. The M06 energies for \(x = 5\) and 6 are most similar to the MP2(full) energies. Cp corrections for density functional theory (DFT) (B3LYP, B3P86, and M06) calculations are 1-2 kJ/mol for the \(\text{HW}^*\) or \(\text{SD}\) basis sets and 3-5 kJ/mol for the \(\text{DeOTZVPP}\) basis set, whereas for MP2(full) calculations, they are 5-12, 5-9, and 6-10 kJ/mol for the \(\text{HW}^*\), \(\text{SD}\), and \(\text{DeOTZVPP}\) basis set treatments.

Overall, B3LYP and B3P86 energies calculated with the \(\text{HW}^*\) or \(\text{SD}\) treatment and all M06 energies are slightly higher than the B3LYP/DeOTZVPP energies, but within 2-3 kJ/mol when cp corrections are included. MP2(full) results are 5-6 kJ/mol above those for B3LYP and B3P86 calculations and change little when cp corrections are not included, Table III.

G. Charge separation channel

We have previously defined the critical size for a M2+(H\textsubscript{2}O\textsubscript{x}) system as the complex size \(x\) at which charge separation becomes the lower energy pathway compared to simple ligand loss. \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\) is the only complex that undergoes charge separation, leading to the \(\text{SrOH}^+\) and \(\text{H}_3\text{O}^+\) products. The apparent thresholds of the charge separation product cross sections lie above the apparent threshold for the \(\text{Sr}^{2+}(\text{H}_2\text{O})\) product cross sections, Figs. 1(b) and 1(c). We attempted to analyze the cross sections for this process using Eq. (2), but because they are only observed at high Xe pressures, no reliable zero pressure extrapolated cross sections suitable for thermodynamic analysis could be obtained.

The theoretical reaction coordinate for charge separation from \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\) is shown in Fig. 5 as calculated at the B3LYP/DeOTZVPP level of theory. Charge separation involves transferring a water molecule from the inner solvent shell to the second solvent shell, where it binds through a single hydrogen bond. As the products separate, a proton is transferred to the second solvent shell water molecule, thereby forming two singly charged ions that separate from one another over a large Coulombic barrier. Table IV provides relative energies of the TSs, intermediates, and prod-

TABLE II. Conversion between 0 K binding energies for H\textsubscript{2}O loss from Sr2+(H\textsubscript{2}O), \(x = 1-6\) to enthalpies and free energies at 298 K in kJ/mol. (Uncertainties are in parentheses.)

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\Delta H_{0}^a)</th>
<th>(\Delta H_{298} - \Delta H_{0}^a)</th>
<th>(\Delta H_{298}^a)</th>
<th>(T\Delta S_{298}^a)</th>
<th>(\Delta G_{298}^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr2+(\text{H}_2\text{O})</td>
<td>201.3(6.1)</td>
<td>4.3(0.2)</td>
<td>205.6(6.1)</td>
<td>28.5(0.5)</td>
<td>177.1(6.1)</td>
</tr>
<tr>
<td>Sr2+(\text{H}_2\text{O})\textsubscript{2}</td>
<td>172.1(4.6)</td>
<td>1.0(0.2)</td>
<td>173.1(4.7)</td>
<td>22.8(1.2)</td>
<td>150.3(4.8)</td>
</tr>
<tr>
<td>Sr2+(\text{H}_2\text{O})\textsubscript{3}</td>
<td>144.2(5.1)</td>
<td>1.5(0.2)</td>
<td>145.7(5.1)</td>
<td>36.3(1.3)</td>
<td>109.4(5.2)</td>
</tr>
<tr>
<td>Sr2+(\text{H}_2\text{O})\textsubscript{4}</td>
<td>124.2(3.6)</td>
<td>1.0(0.2)</td>
<td>125.2(3.6)</td>
<td>33.1(1.3)</td>
<td>92.1(3.9)</td>
</tr>
<tr>
<td>Sr2+(\text{H}_2\text{O})\textsubscript{5}</td>
<td>102.6(3.5)</td>
<td>1.8(0.3)</td>
<td>104.4(3.5)</td>
<td>41.5(1.3)</td>
<td>62.9(3.7)</td>
</tr>
<tr>
<td>Sr2+(\text{H}_2\text{O})\textsubscript{6}</td>
<td>93.6(2.7)</td>
<td>1.0(0.3)</td>
<td>94.7(2.7)</td>
<td>40.2(1.3)</td>
<td>54.5(3.0)</td>
</tr>
</tbody>
</table>

\(\text{a}\) Experimental values from this work (Table I).

\(\text{b}\) Values were calculated using standard formulae and molecular constants calculated at the B3LYP/\(\text{HW}^*/6-311^+\text{G(d,p)}\) level. Uncertainties were determined by scaling the vibrational frequencies up and down by 10%.
TABLE III. Experimental and theoretical 298 K bond enthalpies for H2O loss from ground state Sr\(^{2+}(\text{H}_2\text{O})\), (x = 1–6) in kJ/mol.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>x = 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>206 ±6</td>
<td>173 ±5</td>
<td>146 ±5</td>
<td>125 ±4</td>
<td>104 ±4</td>
<td>95 ±3</td>
</tr>
<tr>
<td>HPMS(^a)</td>
<td></td>
<td></td>
<td></td>
<td>95 ±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIRD(^b)</td>
<td>100 ±4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87 ±4</td>
</tr>
</tbody>
</table>

Geometry\(^c\)

<table>
<thead>
<tr>
<th>Method | Level</th>
<th>x = 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>MAD(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP/HW(^7)*6-311+G(d,p)</td>
<td>M06</td>
<td>195 (196)</td>
<td>167 (169)</td>
<td>148 (150)</td>
<td>131 (133)</td>
<td>111 (113)</td>
<td>100 (102)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>191 (192)</td>
<td>165 (166)</td>
<td>146 (148)</td>
<td>130 (131)</td>
<td>104 (106)</td>
<td>93 (95)</td>
<td>5 ± 5 (5 ± 5)</td>
</tr>
<tr>
<td>B3P86</td>
<td>194 (195)</td>
<td>166 (167)</td>
<td>147 (149)</td>
<td>130 (132)</td>
<td>104 (106)</td>
<td>93 (95)</td>
<td>5 ± 4 (5 ± 4)</td>
</tr>
<tr>
<td>MP2(full)</td>
<td>180 (186)</td>
<td>158 (163)</td>
<td>142 (148)</td>
<td>127 (134)</td>
<td>108 (116)</td>
<td>98 (109)</td>
<td>5 ± 9 (11 ± 6)</td>
</tr>
<tr>
<td>B3LYP/SO/6-311+G(d,p)</td>
<td>M06</td>
<td>195 (196)</td>
<td>167 (169)</td>
<td>148 (150)</td>
<td>130 (132)</td>
<td>111 (113)</td>
<td>101 (103)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>193 (193)</td>
<td>166 (167)</td>
<td>147 (149)</td>
<td>130 (132)</td>
<td>104 (106)</td>
<td>93 (95)</td>
<td>5 ± 5 (5 ± 5)</td>
</tr>
<tr>
<td>B3P86</td>
<td>194 (195)</td>
<td>167 (168)</td>
<td>148 (150)</td>
<td>130 (132)</td>
<td>104 (106)</td>
<td>93 (95)</td>
<td>5 ± 4 (5 ± 4)</td>
</tr>
<tr>
<td>MP2(full)</td>
<td>183 (188)</td>
<td>160 (166)</td>
<td>144 (151)</td>
<td>130 (137)</td>
<td>109 (117)</td>
<td>101 (110)</td>
<td>9 ± 8 (12 ± 5)</td>
</tr>
<tr>
<td>B3LYP/Def2TZVP</td>
<td>M06</td>
<td>195 (198)</td>
<td>169 (172)</td>
<td>148 (151)</td>
<td>130 (133)</td>
<td>114 (114)</td>
<td>101 (110)</td>
</tr>
<tr>
<td>B3LYP</td>
<td>197 (200)</td>
<td>171 (175)</td>
<td>150 (154)</td>
<td>132 (136)</td>
<td>105 (110)</td>
<td>94 (99)</td>
<td>4 ± 3 (6 ± 3)</td>
</tr>
<tr>
<td>B3P86</td>
<td>197 (200)</td>
<td>171 (174)</td>
<td>149 (153)</td>
<td>131 (135)</td>
<td>105 (109)</td>
<td>93 (97)</td>
<td>4 ± 3 (5 ± 3)</td>
</tr>
<tr>
<td>MP2(full)</td>
<td>188 (194)</td>
<td>166 (172)</td>
<td>147 (154)</td>
<td>132 (139)</td>
<td>110 (118)</td>
<td>100 (110)</td>
<td>8 ± 6 (11 ± 5)</td>
</tr>
<tr>
<td>BH&HLYP/Def2TZVPP</td>
<td>BH&HLYP</td>
<td>199 (202)</td>
<td>166 (166)</td>
<td>151 (151)</td>
<td>132 (132)</td>
<td>105 (106)</td>
<td>95 (95)</td>
</tr>
</tbody>
</table>

\(^a\)Values from Ref. 3. \(^b\)Values from Ref. 5. \(^c\)Level of theory for geometry optimization. \(^d\)Basis sets for single point energies are HW\(^7\)/6-311+G(2d, 2p), SO/6-311+G(2d, 2p), or Def2TZVPP. Single point energies in parentheses do not include cp corrections. \(^e\)MADs from experimental binding enthalpies. \(^f\)Theoretical results from Ref. 10. \(^g\)Theoretical results from Ref. 11. Values corrected to 298 K. \(^h\)Theoretical results from Ref. 12. Values corrected to 298 K. \(^i\)Theoretical results from Ref. 13. Values corrected to 298 K.

Products for the charge separation and water loss pathways from Sr\(^{2+}(\text{H}_2\text{O})_2\) calculated at the B3LYP and MP2(full) levels with the HW\(^7\), SD, and Def2TZVPP basis sets. The calculations indicate that \~60 kJ/mol of energy is required to transfer a water molecule into the second solvent shell (TS1) and that this alternate structure (INT) is less stable than the bisligated ground state by 56–60 kJ/mol. The relative B3LYP energies predict that charge separation over TS2 is favored over water loss by 0–19 kJ/mol for all three basis sets, whereas MP2(full) results predict water loss is the lower energy pathway by 0–24 kJ/mol. Overall, the Sr\(^{2+}(\text{H}_2\text{O})_2\) ground state is calculated to be metastable at the B3LYP level of theory by 13–34 kJ/mol, whereas MP2(full) calculations yield higher relative energies of −14 to +13 kJ/mol, Table IV.

TABLE IV. Relative 0 K energies of TSs, intermediates, and products for charge separation and water loss from Sr\(^{2+}(\text{H}_2\text{O})_2\). [B3LYP energies are in roman text. MP2(full) energies are in bold text.]

<table>
<thead>
<tr>
<th>Complex</th>
<th>HW(^7)*</th>
<th>SD(^b)</th>
<th>Def2TZVPP(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(^{2+}(\text{H}_2\text{O})+\text{H}_2\text{O})</td>
<td>165, 162</td>
<td>166, 165</td>
<td>173, 170</td>
</tr>
<tr>
<td>Sr(^{2+}(\text{H}_2\text{O})_2)</td>
<td>0, 0</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>TS1</td>
<td>60, 59</td>
<td>60, 61</td>
<td>61, 60</td>
</tr>
<tr>
<td>INT</td>
<td>56, 58</td>
<td>57, 60</td>
<td>57, 58</td>
</tr>
<tr>
<td>TS2</td>
<td>165, 186</td>
<td>160, 181</td>
<td>154, 170</td>
</tr>
<tr>
<td>Sr(^{2+}(\text{H}_2\text{O})^+) + \text{H}_2\text{O}^-</td>
<td>−13, −13</td>
<td>−24, −24</td>
<td>−34, −14</td>
</tr>
</tbody>
</table>

\(^a\)Single point energies calculated with the HW\(^7\)/6-311+G(2d, 2p) basis set using B3LYP/HW\(^7\)/6-311+G(2d, 2p) geometries and ZPE corrections. \(^b\)Single point energies calculated with the SD/6-311+G(d,p) basis set using B3LYP/SD/6-311+G(d,p) geometries and ZPE corrections. \(^c\)Single point energies calculated with the Def2TZVPP basis set using B3LYP/Def2TZVPP geometries and ZPE corrections.
IV. DISCUSSION

A. Comparison between experimental and literature experimental values

Available results from other experimental studies found in the literature are included in Table III and Fig. 6. For \(x = 6 \), our experimental value is identical to the result from HPMS studies of Kebarle and co-workers. For \(x = 5 \) and 6, our results are 4 and 8 kJ/mol higher than those from BIRD studies of Williams and co-workers. The latter difference is slightly outside the range of the combined uncertainties.

B. Comparison between present experiment and theory

The present theoretical results of Table III can be compared to the experimental binding enthalpies by determining the mean absolute deviations (MADs). Our experimental binding enthalpies agree best with the cp-corrected B3LYP/Def2TZVPP energies with a MAD of 4 ± 3 kJ/mol. Fig. 6, whereas a MAD of 6 ± 3 kJ/mol is found for B3LYP/Def2TZVPP energies without cp corrections. MADs for the B3LYP/HW, B3P86/HW, B3LYP/SD, and B3P86/SD energies are slightly higher at 5 ± 5, 5 ± 4, 5 ± 5, and 5 ± 4 kJ/mol. M06 energies have MADs of 6 ± 3 kJ/mol with respect to the experimental binding enthalpies. MP2(full) energies have MADs that are consistently 4 kJ/mol higher than the MADs for B3LYP energies for a specific basis set treatment. For B3LYP and B3P86 calculations with the HW and SD basis set treatments, the MADs with and without cp corrections do not significantly change because the corrections are small (1–2 kJ/mol). The MADs from the B3LYP and B3P86 levels with the Def2TZVPP basis set decrease slightly (by 1–2 kJ/mol) when cp corrections are included because the deviations for \(x = 3–6 \) are reduced. A more noticeable difference is seen for the MP2(full) binding enthalpies, which have larger BSSEs (5–12 kJ/mol) and lead to a MAD decrease of 2–3 kJ/mol when the cp corrections are included.

The most significant difference between the theoretical calculations and experimental results is usually for the \(\text{Sr}^{2+}(\text{H}_2\text{O})_4 \) complex. MADs would decrease by 0–4 kJ/mol for all calculations if the deviations for the monohydrate binding energy were excluded. Regardless of the chosen ECP, DFT and MP2(full) energies predict a value 4–14 and 12–25 kJ/mol lower, respectively, than the experimental hydration energy of 206 ± 6 kJ/mol. A possible explanation for
this is that core polarization of the Sr is not adequately handled for this complex, in part because an ECP is used. If such polarization were included properly, the water molecule could pull closer to the metal center, thereby resulting in a larger calculated binding energy. Experimental binding energies for \(x=2-6\) are reproduced quite well by B3LYP and B3P86 energies for all basis set treatments. B3LYP and B3P86 energies with the \(\text{H}^+\) and \(\text{SD} \) basis set treatments are \(6-8\) kJ/mol lower than the experimental binding enthalpy of \(173 \pm 5\) kJ/mol for \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\), whereas the Def2TZVPP energies fall within experimental uncertainty. For \(\text{Sr}^{2+}(\text{H}_2\text{O})_4\), the experimental binding enthalpy of \(125 \pm 4\) kJ/mol is slightly below the \(130-132\) kJ/mol range predicted by most levels of theory, whereas the experimental results for \(x=3, 5,\) and \(6\) agree with the B3LYP and B3P86 calculations regardless of the basis set treatment. Overall, the levels of theory giving the best agreement with experiment are DFT approaches (excluding M06) using the Def2TZVPP basis set.

C. Comparison between experimental and literature theoretical values

The results from four theoretical studies are also provided in Table III. Cp-corrected MP2 single point energies calculated by Glendening and Feller11 have a MAD of \(10 \pm 5\) kJ/mol with respect to our experimental binding energies. Their calculated binding energies agree reasonably well with our experimental results for \(x=1\) and \(2\), but the binding energies for \(x=3-6\) are systematically higher by \(10-16\) kJ/mol. This is similar to previous results on the analogous calcium complexes.7 There, our B3LYP/6-311+G(2d,2p)/B3LYP/6-311+G(d,p) binding enthalpies were comparable to those calculated by Glendening and Feller for \(x=1\) and \(2\), but their values were higher than ours by \(7-13\) kJ/mol for \(x=3-6\). There, we suggested that these bond energies would decrease if electron correlation was included in the geometry optimization and if the basis sets in the single point energies included extra polarization functions. 298 K binding enthalpies for \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\) from Klobukowski,12 Bauschlicher and co-workers (BSP),13 and Kaupp and Schleyer (KS)14 have MADs of \(13 \pm 8, 10 \pm 8,\) and \(6 \pm 1\) kJ/mol with respect to our experimental results, respectively. Compared to our experimental results, the binding enthalpies for \(x=1\) and \(2\) of Klobukowski are smaller by \(25\) and \(7\) kJ/mol, but larger for \(x=3\) and \(4\) by \(10\) and \(16\) kJ/mol, respectively. BSP binding enthalpies are similar to Klobukowski's results for \(x=2\) and \(3\), differing by only \(2\) kJ/mol, whereas the binding for \(x=1\) is now \(6\) kJ/mol higher. For KS, the values for \(x=1\) and \(2\) are in good agreement with our experimental results. More useful comparisons could be made here if these latter three theoretical studies determined binding enthalpies for all of the inner shell complexes and included corrections for BSSEs.

V. CONCLUSIONS

The kinetic energy dependent cross sections for \(\text{Sr}^{2+}(\text{H}_2\text{O})_x\), where \(x=1-6\), are determined by TCID using a guided ion beam mass spectrometer equipped with an ESI source. Qualitative comparisons between the CID cross sections for \(\text{Sr}^{2+}(\text{H}_2\text{O})_x\) ions generated with the ESI source and DC/FT source indicate that the ESI source produces ions that are better thermalized than ions generated with the flow tube source. The electrospray source produces an initial distribution of \(\text{Sr}^{2+}(\text{H}_2\text{O})_x\) complexes where \(x=6-9\). Smaller \(\text{Sr}^{2+}(\text{H}_2\text{O})_x\) complexes, where \(x=1-5\), are accessed with a recently developed in-source fragmentation technique that takes place in the high pressure region of the rf-only hexapole ion guide.22 This source can successfully generate reactant complexes in which all water molecules are bound directly to the ion. The dominant process taking place in all systems is the loss of a single water molecule. A charge separation process is observed once the \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\) complex is reached, but the product cross sections for charge separation have magnitudes that are significantly smaller than those for the \(\text{Sr}^{2+}(\text{H}_2\text{O})_x\) product cross section. Theoretical calculations indicate that water loss and the charge separation process are similar energetically, but the latter process is entropically disfavored. This explains why the formation of the \(\text{Sr}^{2+}(\text{H}_2\text{O})\) complex is possible with the in-source fragmentation technique.

The present work determines the first experimental hydration energies for \(\text{Sr}^{2+}(\text{H}_2\text{O})\) to \(\text{Sr}^{2+}(\text{H}_2\text{O})_6\). Our experimental results for \(\text{Sr}^{2+}(\text{H}_2\text{O})_4\) and \(\text{Sr}^{2+}(\text{H}_2\text{O})_6\) agree well with available thermochemistry from HPMS and BIRD studies.3,5 We find that our experimental hydration energies are in very good agreement with binding enthalpies calculated at the B3LYP, B3P86, and BH&HLYP levels of theory with the Def2TZVPP basis set, although the \(\text{HW}^*/6-311 +G(2d,2p)\) and SD/6-311+G(2d,2p) basis sets are only marginally worse. For \(\text{Sr}^{2+}(\text{H}_2\text{O})\) and \(\text{Sr}^{2+}(\text{H}_2\text{O})_2\), the Def2TZVPP basis set calculates binding enthalpies that are slightly higher than those utilizing the \(\text{HW}^+\) or SD treatment and are in better agreement with experimental binding enthalpies. These theoretical results are also in accord with lower level theoretical results in the literature. The good agreement between theoretical and experimental binding energies provides confidence that the TCID approach provides accurate thermodynamic information for multiply charged ions and that the ESI source produces thermalized ions of multiply charged complexes such as \(\text{M}^{2+}(\text{H}_2\text{O})_x\).

ACKNOWLEDGMENTS

Funding for this work was provided by the National Science Foundation under Grant No. 0748790. All theoretical calculations were performed using the Arches Cluster at the University of Utah’s Center for High Performance Computing (CHPC). D.R.C. would like to thank Anita Orendt at the CHPC for assistance in setting up the M06 calculations in NWChem.
