Trigeminal Amyloidoma: Case Report and Review of the Literature

Oren N. Gottfried, M.D.,1 Steven Chin, M.D.,2 H. Christian Davidson, M.D.,3 and William T. Couldwell, M.D., Ph.D.1

1Department of Neurosurgery, 2Department of Pathology, 3Department of Radiology; University of Utah, Salt Lake City, Utah

Oren N. Gottfried, M.D.
Resident
Department of Neurosurgery
University of Utah School of Medicine
30 North 1900 East, 3B409
Salt Lake City, UT 84132
E-mail: dan_fassett@excite.com
Telephone: (801) 581-6908
Fax: (801) 581-4385

H. Christian Davidson, M.D.
Assistant Professor and Executive Vice Chair
Department of Radiology
University of Utah School of Medicine
30 North 1900 East, 1A71
Salt Lake City, UT 84132
E-mail: h.christian.davidson@hsc.utah.edu
Telephone: (801) 581-7553
Fax: (801) 581-2414

Steven S. Chin, M.D., Ph.D.
Associate Professor
Department of Pathology
University of Utah School of Medicine
30 North 1900 East, 5C124
Salt Lake City, UT 84132
E-mail: steven.chin@path.utah.edu
Telephone: (801) 585-6217
Fax: (801) 585-7376

Corresponding author:
William T. Couldwell, M.D., Ph.D.
Professor and Joseph J. Yager Chair
Department of Neurosurgery
University of Utah School of Medicine
30 North 1900 East, 3B409
Salt Lake City, UT 84132
E-mail: william.couldwell@hsc.utah.edu
Telephone: (801) 581-6908
Fax: (801) 581-4385
Abstract

The authors present a case of amyloid infiltration involving the trigeminal nerve that mimicked a malignant cavernous sinus tumor with perineural tumor infiltration. A 64-year-old man presented with trigeminal nerve numbness. Imaging revealed a plaque-like enhancing lesion along the right lateral cavernous sinus extending anteriorly into Meckel’s cave and involving the proximal V2 and V3 trigeminal nerves. The patient underwent extradural frontotemporal craniotomy with middle fossa exposure of the cavernous sinus to diagnose and treat the presumed malignant cavernous sinus tumor. A reddish mass involving the lateral dural wall of the cavernous sinus was resected. There was also enlargement of the gasserian ganglion and second and third divisions of the trigeminal nerve, the latter of which was biopsied. Permanent histopathological studies demonstrated microscopic eosinophilic, amorphous material, which stained positive for Congo red, and absence of neoplastic cells. The final diagnosis was amyloidoma. Thus, amyloidomas may occur from the trigeminal nerve or ganglia and should be considered in the differential diagnosis of a cavernous sinus lesion mimicking a tumor. The few reports of trigeminal amyloidomas are reviewed and the presentation, imaging, and management of this skull base lesion are discussed. Overall, patients may have symptomatic improvement of trigeminal neuropathy with resection of the amyloidoma outside of the nerve capsule that is compressing the nerve, while resection of the lesion from within the capsule may result in permanent trigeminal nerve dysfunction.

Key Words: Gasserian ganglion, trigeminal, amyloidoma,

Running Title: Trigeminal amyloidoma
Introduction

Amyloidomas of the nervous system are extremely uncommon and are invariably of the amyloid light-chain lambda type. Typically, cerebral amyloidomas present as single or multiple supratentorial masses located in the white matter of the brain parenchyma. Only rarely has amyloid disease been described to involve other nervous tissue, and only 12 cases of amyloid involving the gasserian ganglion or trigeminal nerve have been described previously in the literature. These patients may present with a pattern of trigeminal amyloidosis, starting with trigeminal anesthesia, hypalgesia, or dysesthesia, with progressive face anesthesia and, possibly, weakness or atrophy of the muscles of mastication. It is important to consider amyloidoma, a benign process, in the differential diagnosis when imaging reveals a mass in Meckel’s cave, a mass around the gasserian ganglion or trigeminal branches, or a cavernous sinus lesion, in order to select the appropriate management and surgical strategy. We present a patient with progressive trigeminal nerve sensory loss from an amyloidoma of the trigeminal nerve; this patient had a dural-based mass as well as enlargement of the trigeminal nerve that mimicked a malignant cavernous sinus tumor with perineural tumor infiltration. We also review the literature regarding the clinical and radiological presentation and management of trigeminal amyloidomas.

Case Report

A 64-year-old man had a progressive 9-month history of numbness and tingling on the right side of his face without associated pain. He had decreased sensation in the distribution of V2 and V3 of the trigeminal nerve. Magnetic resonance imaging (MRI) demonstrated a plaque-like enhancing lesion along the right cavernous sinus extending anteriorly into Meckel’s cave. It involved the proximal V2 and V3 trigeminal nerves, extending to the foramen rotundum and ovale,
respectively, and the vidian nerve; these nerves also appeared enlarged (Figure 1). The preoperative diagnosis of this lesion was malignant cavernous sinus tumor with perineural tumor infiltration, or less likely meningioma or schwannoma.

Chest X-ray, complete blood count (CBC), and serum chemistry test results were within normal limits. Given the progressive trigeminal symptoms, the patient was offered surgery for the purpose of diagnosis and possible resection. He underwent a right frontotemporal craniotomy with middle fossa exposure of the cavernous sinus through an extradural exposure. A reddish mass involving the lateral dural wall of the cavernous sinus was noted. The bone around the foramen rotundum and foramen ovale was drilled to afford decompression of the enlarged second and third divisions of the trigeminal nerve, respectively. After the lateral wall of the cavernous sinus was removed, the trigeminal nerve was inspected. The gasserian ganglion and the second and third divisions of the trigeminal nerve were enlarged and appeared infiltrated, although the fascicular pattern of the nerve was maintained. A biopsy of a fascicle of the third division of the trigeminal nerve at the entrance of the nerve branch through the foramen ovale was performed.

Permanent histopathological studies demonstrated microscopic eosinophilic, amorphous material, which stained positive for Congo red (Figure 2) and thioflavine S. Immunohistochemistry studies displayed staining for lambda light chains. No neoplastic cells were identified, but reactive meningotheelial cells were present. The samples from the dural mass and the fascicle of the V3 nerve were identified to contain extensive amyloid deposition consistent with amyloidoma.

The postoperative course was uneventful. The patient demonstrated improved sensation in the lower and middle face following decompression, which has remained stable for over 1 year of follow up. Additional studies revealed no evidence of systemic amyloidosis. Recent MRI at 1 year showed some diminished enhancement of the cavernous sinus.
Discussion

Amyloid is an abnormal insoluble protein that under certain pathological conditions can be deposited in the extracellular space and can involve almost every organ system.13 Although amyloid deposition within the brain can take many forms, including cerebral amyloid angiopathy or senile plaques of Alzheimer dementia, tumor-like deposition (amyloidoma) is extremely uncommon.13 Amyloidoma is defined as primary solitary amyloidosis where no plasma-cell dyscrasia or abnormal serum proteins are detectable.14 The source of amyloid protein that forms a tumor in the central nervous system is unclear and is thought either to derive from components that leak from vessels or to be synthesized at the site of deposition from coexistent plasma cells, but the origins of intracerebral plasma cells observed in some cerebral amyloidomas are not understood.13,15

The average age of presentation of patients harboring cerebral amyloidomas is 47.8 years and there is a slight female predominance.13 Amyloidomas are located in the brain parenchyma,1 and patients present with solitary or multiple supratentorial white matter masses that have little or no mass effect on the surrounding anatomy, extend medially to the lateral ventricle ependyma, and have irregular margins.13 CT scans typically demonstrate a mass that varies from hypodense to patchy increased density and contrast enhances. MRI of cerebral amyloidomas generally reveals mostly hypointense lesions on T1-weighted images but it can also appear isointense or hyperintense, and mixed high and low signal on T2-weighted images, with lesions demonstrating variable degrees of enhancement.13 The clinical course of intracerebral amyloidomas is benign, although these lesions can demonstrate slow growth. Very infrequently it is possible to have a regrowth after resection,13,15 but the natural history of this rare lesion is not fully understood because of the low incidence of the disease.
Amyloidomas have also been described affecting other nervous tissue, including spinal roots,16 the brachial plexus,17 and peripheral nerves.18 Rarely, amyloid disease has been described to cause trigeminal neuropathy because of involvement of the gasserian ganglion, and it is not clear why there is a predisposition for this ganglia.2-11 Overall, there have been 12 previous reports of patients with trigeminal amyloidomas, beginning with the first case described by Daly et al. in 1957 (Table 1). These patients all presented with some form of trigeminal neuropathy, including trigeminal hypalgesia, dysesthesia, or face anesthesia, and rarely with V3 motor dysfunction with weakness or atrophy of the muscles of mastication. In most cases, the hypalgesia or dyesthesias preceded the onset of facial anesthesia and over time the numbness increased its distribution on the face. The duration of symptoms prior to treatment ranged from 2 months and up to 10 years in one series.3 In two cases, patients had bilateral trigeminal nerve dysfunction from bilateral amyloidomas.6,8 Overall, although all patients presented with trigeminal neuropathy and many with continuous facial pain, the symptoms were clearly distinct from trigeminal neuralgia, which has episodes of intense, stabbing, electric shock-like pain and is associated with specific triggers.

With advances in modern imaging it has been possible to better characterize the lesions, and, with increased knowledge of amyloidomas, it may be possible to identify these lesion on imaging before surgery (Table 1). In only one study7 did the authors describe the density of the amyloidoma on CT and they found that the tumor was isodense. In contrast to cerebral amyloidomas, on MRI these trigeminal variants commonly appeared isointense on T1-weighted images and hypointensity or mixed intensity (hypointensity and isointensity) on T2-weighted images. It is thought that the mixed signal intensities of amyloidomas on T2-weighted images are due to uneven deposition of amyloid protein.7 Several authors have noted that the low signal on T2-weighted imaging, due to increased amyloid deposition, is suggestive of the diagnosis of amyloidoma and differentiates this
lesion from other lesions, including schwannomas. Of note, the most common preoperative diagnosis of this lesion in the 12 previously described amyloidomas was schwannoma. Finally, a common imaging characteristic on MRI was uniform enhancement localized to Meckel’s cave with enhancement of the ganglion and or nerve branches.

Most authors took similar approaches to the management of the trigeminal amyloidomas (Table 1). In most cases, the tumor was located exclusively within the nerve capsule and infiltrated in and around the nerve fibers. Many of these patients underwent a craniotomy with incision of the nerve capsule and biopsy of the abnormal tissue without an attempt at further resection. In these cases, follow-up information and imaging was not provided, and thus it is unclear whether the biopsy had an effect on the patients’ symptoms or the natural history of the disease. Several cases involved resection of the lesion. Matsumoto and colleagues resected an amyloidoma through an extradural skull base approach and found the tumor located between the lateral wall of the cavernous sinus and the second and third divisions of the trigeminal nerve. They noted that the tumor adhered slightly to the trigeminal nerve but was easily resected to obtain a gross total resection. Vorster and coworkers performed a similar surgery, and they were able to resect an amyloidoma located medially to the gasserian ganglion, which was clearly distinguishable from it, but amyloid was also intermingled with the V1, V2, and V3 branches. They reported that the surgical plane was lost where the lesion was intimately involved with these nerves and, thus, a subtotal resection was performed to spare function of the nerves. In contrast to the patient described by Matsumoto et al., their patient suffered increased numbness from the surgery. In another two series, it was difficult to differentiate lesion from the nerve and, although an attempt at a gross total resection was made, both patients had increased sensory loss and weakness after surgery. Finally, the patient described by Daly and coworkers had an extensive piecemeal resection of all of
the abnormal tissue intermingling with the nerve fibers within the nerve capsule. The patient had complete trigeminal numbness in all distributions and V3 motor weakness after surgery. Overall, decompressive surgery with debulking of tumor outside of the capsule was associated with improvement or resolution of trigeminal pain and numbness, while an extensive resection within the nerve capsule was associated with worse trigeminal dysfunction.²,⁴,⁵,¹⁰

In the current case, the tumor located outside of the nerve was completely resected through an extradural approach similar to two of the cases above,⁷,¹⁰ but the tumor within the nerve capsule involving the nerve fibers was biopsied but not resected. The V2 and V3 trigeminal branches were markedly enlarged, and thus, we decompressed the foramen rotundum and ovale. The tumor within the trigeminal nerve was not resected to preserve function. This surgical strategy offers immediate symptomatic relief from trigeminal pain and dysesthesia without causing increased sensory loss or V3 motor dysfunction. Long-term imaging has not been reported on any of the previous 12 cases to understand the natural history of the disease and whether the lesion has the capacity to regrow and cause symptoms after a subtotal resection. In one paper,³ two patients were followed for 1 and 9 years without a clinical recurrence of symptoms, although both patients had existing deficits after surgery.

This case demonstrates that amyloidoma should be considered as a possibility in the differential diagnosis of a cavernous sinus lesion or a lesion arising from the gasserian ganglion or within Meckel’s cave in addition to meningiomas, schwannomas, malignant cavernous sinus tumors, and inflammatory disorders.
Acknowledgment

The authors would like to acknowledge the superb editorial assistance of Ms. Kristin Kraus.
REFERENCES

FIGURE 1. A-C. Axial post-contrast T1-weighted imaging through the central skull base. Enhancing tissue representing amyloidoma is evident in the lower Meckel's cave region on the right (arrow, A). Perineural enhancement is present extending into foramen rotundum (arrow, B) and foramen ovale (arrow, C). D-E. Coronal STIR and post-contrast T1-weighted imaging. Amyloid deposition appears as a filling defect in the lateral aspect of Meckel's cave on STIR image (arrow, D). Corresponding enhancement is demonstrated (arrow, E).

FIGURE 2: Photomicrograph. A. Specimen demonstrating deposits of eosinophilic, amorphous material. No significant inflammatory cells or neoplastic cells are present. (H&E staining, original magnification, X100). B. Typical pattern of apple-green birefringence is present in specimen stained with Congo red and viewed with polarized light X40.
Table 1: Review of clinical presentation, imaging characteristics, and management of amyloidomas of the gasserian ganglion

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Author</th>
<th>Age</th>
<th>Sex</th>
<th>Symptom per symptoms or imaging</th>
<th>Location of tumor at surgery</th>
<th>CT</th>
<th>MRI</th>
<th>Tumor location at surgery</th>
<th>Treatment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daly et al., 1957</td>
<td>42</td>
<td>M</td>
<td>V2/V3 trigeminal pain with progressive numbness</td>
<td>Right gasserian ganglion and V2 and V3</td>
<td>NA</td>
<td>NA</td>
<td>Mostly within nerve capsule with small component outside, 50% trigeminal nerve bundles replaced by amyloid</td>
<td>Craniotomy with extensive resection of amyloidoma around nerve fibers</td>
<td>After surgery, resolution of pain with complete numbness of V1, V2 and V3, complete V3 motor weakness</td>
</tr>
<tr>
<td>2</td>
<td>Plogsties, 1964</td>
<td>54</td>
<td>M</td>
<td>Numbness and trigeminal pain</td>
<td>Right gasserian ganglion</td>
<td>NA</td>
<td>NA</td>
<td>Within nerve capsule</td>
<td>Craniotomy for biopsy of infiltrated ganglion</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Borghi and Tagliabue, 1971</td>
<td>58</td>
<td>F</td>
<td>V1/V2/V3 incomplete numbness, trigeminal pain, and motor weakness</td>
<td>Right Meckel’s cave</td>
<td>NA</td>
<td>NA</td>
<td>Lesion at Meckel’s cave but ganglion and nerve not identified</td>
<td>Craniotomy for complete tumor resection</td>
<td>At 2 years, complete sensory loss V1-3, complete V3 motor weakness and resolution of pain</td>
</tr>
<tr>
<td>4</td>
<td>DeCastro et al., 1976</td>
<td>59</td>
<td>M</td>
<td>Numbness and minimal pain V2 and V3 progressing to V1</td>
<td>Right gasserian ganglion</td>
<td>NA</td>
<td>NA</td>
<td>Lesion with components outside of nerve and within nerve without discrete nerve capsule</td>
<td>Craniotomy for complete tumor resection</td>
<td>After surgery, complete V2 and V3 sensory loss, resolution of pain, transient weakness V3 motor</td>
</tr>
<tr>
<td>5</td>
<td>Bornemann et al., 1993</td>
<td>32</td>
<td>F</td>
<td>Numbness and pain V2 and V3, atrophy of muscles of</td>
<td>Left gasserian ganglion</td>
<td>Normal</td>
<td>NA</td>
<td>Lesion within Meckel’s cave</td>
<td>Craniotomy for resection without other details</td>
<td>After surgery, resolution of pain, but at 9 years follow-up, sensory and</td>
</tr>
<tr>
<td></td>
<td>Authors</td>
<td>Age</td>
<td>Gender</td>
<td>Symptoms</td>
<td>Side</td>
<td>Imaging Details</td>
<td>Procedure Details</td>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bornemann et al., 1993</td>
<td>49 F</td>
<td>V1/V2/V3 numbness and pain</td>
<td>Left</td>
<td>Normal</td>
<td>Uniform enhancement</td>
<td>Lesion within Meckel’s cave</td>
<td>Craniotomy for resection without other details</td>
<td>After surgery, improvement of pain, but at one year continued numbness and with atrophy of muscles of mastication</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bornemann et al., 1993</td>
<td>45 F</td>
<td>V1/V2/V3 numbness</td>
<td>Left</td>
<td>Enhancement of lesion</td>
<td>Slight marginal enhancement</td>
<td>Lesion within Meckel’s cave</td>
<td>Craniotomy for resection with further details</td>
<td>After surgery, pain resolved</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O’Brien et al. 1994</td>
<td>49 F</td>
<td>*Left decreased sensation V1-V3, weak V3 motor, left V2 trigeminal pain, right V3 numbness</td>
<td>Left</td>
<td>NA</td>
<td>Uniform enhancement</td>
<td>Within nerve capsule</td>
<td>Craniotomy for biopsy of infiltrated ganglion</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kirch et al., 1998</td>
<td>34 M</td>
<td>*Bilateral numbness V1 > V2 or V3, microbial keratitis</td>
<td>Bilateral</td>
<td>NA</td>
<td>Hypointense on T1-weighted, heterogenous on T2-weighted imaging; uniform enhancement</td>
<td>Within nerve capsule</td>
<td>Craniotomy for biopsy of infiltrated ganglion</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vorster et al., 1998</td>
<td>46 F</td>
<td>V2/V3 numbness progressing to trigeminal pain</td>
<td>Right</td>
<td>NA</td>
<td>Isointense on T1-weighted, hypointense T2-weighted imaging; uniform enhancement</td>
<td>Outside and within nerve capsule</td>
<td>Craniotomy for subtotal resection, tumor intermingled with trigeminal branches unable to be resected</td>
<td>At 1 month, complete resolution of pain with complete anesthesia of V1 and V2, normal V3 motor function with minimal V3 anesthesia</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Matsumoto</td>
<td>41 F</td>
<td>V2/V3</td>
<td>Left</td>
<td>Isodense</td>
<td>Isointense on T1-weighted, hypointense T2-weighted imaging; uniform enhancement</td>
<td>Outside of Craniotomy</td>
<td>Craniotomy for</td>
<td>At 2 months,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1-weighted, heterogenous on T2-weighted imaging; uniform enhancement</td>
<td>nerve capsule</td>
<td>total resection</td>
<td>improved sensation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>------------------------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>et al., 1999</td>
<td></td>
<td>numbness</td>
<td>Meckel’s cave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Yu and de Tilly, 2004</td>
<td>62</td>
<td>M</td>
<td>Trigeminal pain</td>
<td>Left Meckel’s cave</td>
<td>NA</td>
<td>Isointense on T1-weighted, hypointense on T2-weighted imaging; uniform enhancement</td>
<td>Within nerve capsule</td>
<td>Craniotomy for biopsy of infiltrated ganglion</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>Current case, 2006</td>
<td>64</td>
<td>M</td>
<td>V2/V3 numbness</td>
<td>Right lateral cavernous sinus into Meckel’s cave and V2 and V3 trigeminal nerves</td>
<td>NA</td>
<td>Isointense on T1-weighted, hypointense on T2-weighted imaging; uniform enhancement</td>
<td>Outside and within nerve capsule</td>
<td>Craniotomy for resection of amyloidoma outside capsule compressing nerve and decompression of foramen</td>
<td>At 2 months, improved sensation</td>
</tr>
</tbody>
</table>

* Bilateral amyloidomas on imaging.

Note: None of these patients had any evidence of systemic amyloidosis, underlying malignancy, or inflammatory disease.