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ABSTRACT 

 

 

Heart disease is the leading cause of death in the United States. Mechanical 

circulatory support by ventricular assist devices (VADs) is a means by which 

deteriorating heart function can be supplemented, and is a leading therapy for late-

stage heart failure patients. The devices are commonly connected to the apex of the 

left ventricle (LV) to move oxygenated blood to the body via the aorta. Recent 

developments have made continuous-flow pumps commonplace in the clinical 

environment when compared to their pulsatile-flow predecessors. Typically, 

continuous-flow VADs are designed with axial- or centrifugal- (radial) configurations. 

The pressures and flow rates vary dramatically in the native heart as blood is moved 

from the LV to the aorta. 

This dissertation presents pressure-flow characteristics for both axial- and 

centrifugal-flow VADs within a wide range of pressure differential values under 

uniform conditions, by means of a novel, open-loop flow system. Current techniques 

employ a closed-loop system to determine pump performance. A closed-loop system 

does not allow pressure differentials less than or equal to zero to be achieved. The 

native heart experiences pressure gradients near zero across the aortic valve during 

systole, which is essentially where the VAD is placed. Thus, an open-loop flow 

system with independently adjustable preload and afterload pressures is required to 
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reach physiologically-relevant pressure differential regions that approximate the 

pressure gradient across the aortic valve during systole. 

Additional modifications made to the open-loop flow system generate pulsatile 

flow type conditions, which mimic those of the native LV.  With this type of in vitro 

test system, not only can general hydrodynamic performance and hydraulic efficiency 

of VADs be measured, but also off-design operational performance under dynamic 

flow conditions can be characterized. This research explores hydrodynamic 

performance characteristics of axial- and centrifugal-flow VADs to determine design 

advantages that each have. Device characteristics include pressure-flow performance 

curves, pressure sensitivity, pulsatility index, and pulsatility ratio. Performance curves 

and other relevant attributes are investigated at previously unreported pressure-flow 

regions. Performance is evaluated theoretically, computationally, and experimentally 

under both steady-state, continuous-flow and pulsatile-flow circumstances. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

This section introduces the background and motivation for the development, 

use and characterization of ventricular assist devices (VADs). Relevant previous work 

and literature is outlined. The hypotheses and contributions that form the basis for this 

dissertation are also presented. 

 

1.1 Background 

 

1.1.1 Heart Physiology 

The human heart can best be described in mechanical terms as a dual-reservoir, 

dual-pump device.  The four chambers of the heart are the right and left atria 

(reservoirs) and the right and left ventricles (pumps).  Each ventricle has two 

unidirectional valves to ensure unidirectional flow in and out of the pump chamber. 

Deoxygenated blood is routed through the body to the superior and inferior vena 

cavae, which fill the right atrium with blood.  The right atrium contracts and forces the 

blood through the tricuspid valve and into the right ventricle.  The tricuspid valve 

closes to prevent backflow and the right ventricle contracts.  As the right ventricle 

contracts, the pulmonary valve opens and blood is directed to the lungs via the 

pulmonary artery. 
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Carbon dioxide and oxygen are exchanged by diffusion at the lungs and oxygen-

rich blood returns to the heart via the pulmonary veins, which fill the left atrium.  A 

similar process is repeated simultaneously on the left side of the heart.  Namely, the 

left atrium contracts and forces the blood through the mitral valve and into the left 

ventricle.  The mitral valve closes to prevent backflow and the left ventricle contracts.  

As the left ventricle contracts, the aortic valve opens and sends blood to the body via 

the aorta.  While the right and left ventricle pump the same volume of blood during a 

contraction, the left ventricle generates a higher outflow pressure in order to facilitate 

circulation through the extremes of the entire body. 

Figure 1.1 shows an illustrated cross-section of a heart.  Blue arrows show the 

direction of flow for deoxygenated blood (to the lungs), and red arrows show the 

direction of flow for oxygen-rich blood (to the body). 

 

1.1.2 Heart Failure 

Heart disease is a leading cause of death today in the United States.  The 

Center for Disease Control and Prevention (CDC) reports that 12% of the U.S. 

population has been diagnosed with heart disease.  Further, the CDC’s Division of 

Vital Statistics state that approximately 600,000 people die from diseases of the heart 

each year, which is about 25% of the total deaths that occur in the U.S. on an annual 

basis [1].  The American Heart Association (AHA) estimates that over 82 million 

American adults have a cardiovascular disease (CVD), and almost half of them are 

over 60 years of age [2]. 

The New York Heart Association (NYHA) has developed a classification 

system for levels of heart failure based on symptoms in patients such that physicians 
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can readily diagnose and treat the disease. Class IV is the most severe, with patients 

expressing symptoms at rest, and the population of this group is typically viewed as 

analogous to that of the CDC reported heart disease mortality rate. Class III diagnosis 

is for those with moderate heart disease symptoms, while Classes I and II are for 

functional patients with mild symptoms. The population of Class III has been 

estimated to be well over one million. 

Various therapies exist to treat heart disease, including organ transplantation 

for those with the most severe cases. The U.S. Department of Health and Human 

Services Organ Transplantation and Procurement Network has reported an average of 

2166 heart transplants occurring throughout the country each year, while the current 

number of patients approved and waiting for a donor heart is nearly 3200 [3]. 

 

1.1.3 Ventricular Assist Devices 

Several heart diseases contribute to the muscular weakening of the body’s 

pumping organ, which can reduce the flow of blood.  Ventricular Assist Devices 

(VADs) are surgically implantable pumping devices employed to restore or support 

the flow of blood through the heart, and do not replace the heart organ completely [4].  

VADs are implanted to either bridge a patient to transplantation (BTT) or as a long-

term therapeutic alternative to transplantion, also called destination therapy (DT). It is 

estimated that approximately 1700 mechanical circulatory support devices are 

implanted each year in the U.S. as a means to aid the failing heart [5], with a potential 

population of over half a million, based on NYHA classification IV alone. 

A Left Ventricular Assist Device (LVAD) can be surgically attached to the 

apex of the left ventricle and the aorta.  The LVAD assists the heart by pumping blood 
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out of the left ventricle and into the aorta, where it is distributed to the rest of the 

body. VADs have been classified as first generation, second generation, and so on. 

First generation pumps are distinguished by volume-displacement or pulsatile-flow 

mechanism. Second generation pumps are continuous-flow devices with contact 

bearings within or near the blood flow path. And third generation devices are 

continuous-flow rotary pumps that employ hydrodynamic or electromagnetic 

suspension in place of mechanical bearings [6]. 

A Right Ventricular Assist Device (RVAD) is similar to an LVAD in 

mechanical structure and functional design, and is attached to the right ventricle of the 

heart to assist in pumping deoxygenated blood to the lungs.  The only differences 

between RVADs and LVADs are the surgical placement, and the associated inflow 

and outflow conduits to optimize compatibility with right ventricle and pulmonary 

artery versus the left ventricle and aorta.  In addition to conduits, smaller overall size 

and a lower desired operating range are distinguishing features for an RVAD 

compared to an LVAD as the right ventricle does not require as much pressure and 

flow as the left.  An LVAD and an RVAD can both be connected to the heart to serve 

as total heart replacement [7]. 

VADs, like hearts, need electrical stimulation for continuous function.  So 

while the pump itself is implanted into the body, a percutaneous cable runs from the 

pump to the external hardware (electrical/computer controller, power supply, etc).  

VADs were originally intended as short-term, bridge-to-transplant devices for patients 

awaiting a heart transplant.  However, the devices have seen more long-term 
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application such as destination therapy, where they are implemented in terminally ill 

patients whose condition deems them disqualified for heart transplantation. 

 Figure 1.2 is an artistic representation of VAD placement in the circulatory 

system.  The VAD (2) connects to the apex of the left ventricle via an inflow cannula 

(1), and moves blood from the ventricle chamber to the ascending aorta via an 

anastomosed outflow conduit (4).  Also shown is the percutaneous driveline (3) by 

which the VAD is connected to a controller and power supply. 

 

1.2 Hypotheses 

Currently, continuous-flow VADs are used much more widely than those 

delivering pulsatile flow.  While VADs have been implanted and studied for several 

years, an understanding of properties inherent to pump design continues to be explored 

under physiologic conditions.  However, the current literature contains a significant 

deficiency of data for pressures relevant to the physiologic system, namely systolic 

pressure differentials that are near or equal to zero. 

 The objective of this research is to explore VAD performance characteristics at 

physiologically-relevant conditions, but specifically including systolic pressure 

differentials near or equal to zero. 

It is hypothesized that centrifugal-flow VADs are more optimal, in a 

physiologically compatible sense, than axial-flow pumps.  Centrifugal-flow devices 

exhibit flow properties more conducive to native heart function.  Performance 

characteristics include pressure-flow performance curves, pressure sensitivity, 

pulsatility index and pulsatility ratio. 
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To address the objective of this research and characterize VAD performance at 

physiologically-relevant conditions, including systolic pressure differentials near zero, 

the following scientific questions will be investigated: 

1. Evaluate how flow characteristics of axial- and centrifugal-flow VADs 

compare to one another and to the native heart, by: 

a. Investigating the shape of performance curves at previously unreported 

pressure-flow regions. 

b. Understanding what the shape of performance curves at previously 

unreported pressure-flow regions indicate. 

c. Evaluating how the shape of performance curves at previously 

unreported pressure-flow regions similar to previously assumed data. 

2. Evalutate how device performance (pressure sensitivity) of axial- and 

centrifugal-flow VADs compare to one another under theoretical physiological 

conditions. 

3. Evaluate how device performance (pulsatility index, etc.) of axial- and 

centrifugal-flow VADs compare to one another under experimental in vitro 

conditions. 

It is hypothesized that continuous-flow VADs with centrifugal design will 

have higher hydraulic efficiency, be more pressure-sensitive, and have higher 

pulsatility than those of axial-flow design. Particulars for each of the three hypotheses 

are presented with detailed methods, results, discussions, and conclusions in Chapters 

2, 3, and 4, respectively, in this dissertation.  The basis for the three hypotheses is a 

combination of design theory, anecdotal experience, and intuition. 
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1.3 Contributions 

This research addresses a knowledge gap in the analysis of ventricular assist 

devices (VADs) at physiologically-relevant conditions. Namely, but not limited to, the 

performance characteristics of VADs operating during systole (low transaortic 

pressure gradient). It will be shown that pressure-flow performance data can be 

determined for any VAD by means of the novel application of an open-loop flow 

system. This project will afford surgeons an increased knowledge and understanding 

of VAD operation relevant to physiologic performance, aid in patient-education for 

device selection, and improve diagnosis of implanted patients. This project will show 

engineers and clinicians alike the differences in performance between axial- and 

centrifugal-flow devices. Performance will be evaluated theoretically, 

computationally, and experimentally under both steady-state, continuous flow and 

pulsatile flow circumstances. 
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Figure 1.1. Heart interior [8]. Courtesy NHLBI, NIH, DHHS. 
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Figure 1.2. Device connection to the native heart [9]. Connection of the device inflow 

port to the left ventricular apex (1); Pump (2); Percutaneous driveline cable (3); 

Outflow graft anastomosed to ascending aorta (4). 
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CHAPTER 2 

 

 

FLOW CHARACTERISTICS OF AXIAL-FLOW AND 

 

CENTRIFUGAL-FLOW LEFT VENTRICULAR 

 

ASSIST DEVICES 

 

 

Fluid pumping technology has been around for centuries, and is well 

understood and documented. However, the pump design optimization techniques 

accepted in industry are geared toward steady-state constant flow conditions. In 

contrast, the implantation of a continuous flow pump to aid the output of the human 

left ventricle subjects the device to perpetual variation. This study measures pressure-

flow performance characteristics for both axial- and centrifugal-continuous flow rotary 

blood pumps across a wide range of pressure differential values under uniform 

conditions by means of a novel open-loop flow system. The axial-flow devices show 

greater hydraulic losses and lower hydraulic efficiency. All pumps yield greatest 

hydraulic efficiency at a head to flow coefficient ratio of approximately 1.7. The open-

loop flow system accounts for the dynamic changes associated with human heart 

physiology and allows for more precise characterization of existing heart pumps, as 

well as those in development. 
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2.1 Introduction 

Typical design practices for rotodynamic fluid pump configurations, axial or 

centrifugal, are centralized around a specific speed for a desired pressure and flow 

[1,2]. Classically, axial-flow pumps tend to be used under high flow rate and low head 

pressure conditions, while centrifugal-flow pumps are designed for lower flow rate 

and higher head conditions. Many rotodynamic pumps used around the world are 

employed under stable fluid pressure conditions that do not exhibit continuous 

variation. Unfortunately, this is not the case with ventricular assist devices (VADs) 

placed within the dynamic environment of the human heart. VADs are exposed to 

broad ranges of preload, or left ventricular pressure (LVP), and afterload, or aortic 

pressure (AoP), when implanted in the circulatory system. Typical blood pressures are 

120/80 (mmHg; systolic/diastolic), and flows are 5.5 L/min for healthy adults [3]. 

While in this configuration the transaortic pressure gradient (AoP – LVP) can have an 

impact on the output of the device [4]. The transaortic pressure gradient is greatest 

during end-systole and early diastole, where high arterial and decreasing ventricular 

pressures exist, and approaches zero during systole when the aortic valve is open. 

Thus, the application of typical pump design parameters for ideal performance over 

the range of physiological pressures is not viable [5]. 

Many reports have been published on the performance characteristics of 

individual VADs [6-8]. Reports available in the published literature employ a closed-

loop hydraulic circuit to characterize device performance (Figure 2.1a), where 

pressures may be measured near the inlet and outlet of the pump, outflow is measured, 

and outflow pressure may be varied by a valve or other similar means. However, due 
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to the physical, hydrodynamic limitations of the closed-loop systems that are 

employed for device characterization, only a limited range of flow rate (Q) and 

pressure differential (∆P) values are reported [9]. The closed-loop hydraulic system is 

an acceptable tool used to collect a limited amount of data; however, because the 

outflow is directly connected to the inflow, ∆P down to a certain minimal threshold 

may be achieved and nothing lower. As such, current devices utilizing this system are 

not actually tested over the full range of physiologically-relevant pressure-flow 

conditions. 

The study of flow characteristics of rotodynamic pumps can yield a wealth of 

information. Yet, few reports test and analyze multiple devices under the same 

conditions (system, resistances, fluid temperature, fluid viscosity, etc) [10]. No reports 

compare performance characteristics and design constants of both axial- and 

centrifugal-flow VADs to one another. Functionality of axial- and centrifugal-flow 

devices can be compared to one another by examination of the performance curves 

and dimensionless analysis of impeller speed, fluid pressure and fluid flow. 

Dimensional analysis of device performance will yield details on specific speed and 

general performance, which further show the hydraulic losses and efficiency of each 

device. As a consequence, performance can be compared between multiple devices. 

In this study, pressure-flow characteristics for both axial- and centrifugal-flow 

VADs are measured over a wide range of uniform physiologically-relevant conditions, 

by means of a novel, open-loop flow system. 
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2.2 Methods 

A novel mock circulatory loop (Figure 2.1b) was designed to measure pump 

preload, afterload, and output flow rate under different operating conditions. The loop 

consisted of an acrylic 20-L reservoir with weir filled with a blood-analog fluid (~40% 

glycerin in water at 36 °C; Hi-Valley Chemical, Centerville, UT) that had a dynamic 

viscosity of 3.6 cP, and a density of 1.13 g/cc. The adjustable weir was used to 

maintain a steady inflow pressure to the LVAD, which was connected to both upper 

and lower reservoirs by Tygon® tubing (Saint-Gobain, Courbevoie, France). A 

manual gate valve was placed in series with the LVAD to adjust the resistance 

(afterload). Four continuous flow rotary blood pumps were tested, two axial-flow, and 

two centrifugal-flow. 

Pump preload, or inflow pressure (Pi), and pump afterload, or outflow pressure 

(Po) were measured with fluid-filled transducers (Edwards LifeSciences, Irvine, CA), 

and a pressure meter (Living Systems Instrumentation, St. Albans, VT). The pump 

flow rate (Q) was measured with an ultrasonic flow meter and flow probe (Transonic, 

Ithaca, NY). Acquisition of flow meter and pressure meter data signals was performed 

at 40 Hz with a custom system (National Instruments, Austin, TX), and output to a 

comma separated values (csv) file. 

The four devices analyzed will be referred to hereafter as Axial 1 (A1), Axial 2 

(A2), Centrifugal 1 (C1) and Centrifugal 2 (C2). A1 was operated between 7000 and 

13000 rpm at 200-rpm increments. A2 was operated between 8000 and 12000 rpm in 

1000-rpm increments. C1 was operated between 800 and 3000 rpm, and C2 was 

operated between 1800 and 3000 rpm, both at 200-rpm increments. The resistance was 
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varied from minimal to maximal with the manual gate valve at each pump speed. Flow 

rate was allowed to stabilize in 0.25 L/min increments. Pressure differential across the 

pump (∆P = Po – Pi) was recorded manually in increments of 1 L/min to ensure the 

integrity of the data acquisition (DAQ) system. 

For data analysis and plotting, MATLAB (v6.5; MathWorks, Natick, MA) and 

a spreadsheet program (Excel 2007, Microsoft, Redmond, WA) were used. The 

relationship between pump flow rate and differential pressure was extracted from the 

original 40 Hz csv files and tabulated in another spreadsheet file at 0.25-L/min 

increments for all applicable speeds. 

 

2.3 Calculations 

Dimensionless quantities for pump flow or the so-called pump affinity laws 

have been well established for fluid dynamic analysis and comparison of pumps [1]. 

The analysis here includes nondimensional performance parameters such as specific 

speed (N), head coefficient (ψ), flow coefficient (φ), Reynolds number (Re) and 

hydraulic efficiency (ηh). Specific speed is calculated by equation 2.1, where Ω is 

rotational speed of the impeller [rad/s], Q is flow [m
3
/s], H is head [Pa], and g is 

acceleration due to gravity [m/s
2
]. Employing consistent metric units will yield a 

dimensionless N. 

 

4/3

2/1

)(gH

Q
N

Ω
=     (2.1) 

 

 

22
Ω

=
R

gH
ψ     (2.2) 
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Ω
=

AR

Q
ϕ     (2.3) 

 

 

Performance curves for any given impeller speed are unified into a single 

curve via the nondimensionalization of pressure (or head) and flow. Equations 2.2-2.3 

are used to gauge characteristic coefficients for head (ψ) and flow (φ), where R is the 

radius of impeller [m], and A is the area of inlet or outlet [m
2
]. Reynolds number and 

hydraulic efficiency are defined by equations 2.4-2.5. 

 

µ

ρ 22 R
Re

Ω
=     (2.4) 

 

 

Ω

∆
=

T

PQ
hη     (2.5) 

 

 

where ρ is the fluid density, µ is dynamic viscosity, and T is the torque applied by the 

impeller to the fluid. 

 Another point of interest for pump designers is the pump resistance (Rp), which 

is commonly defined by the slope of the performance curve. Equation 2.6 

characterizes the pump resistance function in nondimensional terms. Finally (equation 

2.7), pump sensitivity (Sp), is hereby described as the inverse of pump resistance. 

 

ϕ

ψ

d

d
Rp −=     (2.6) 

 

 

ψ

ϕ

d

d
S p −=     (2.7) 
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2.4 Results 

Utilizing our open loop configuration, pressure-flow performance curves were 

generated for each LVAD (Figure 2.2). ∆P values down to zero were obtained for all 

devices. The range of data for ∆P = 0 is crucial because the physiological system (AoP 

– LVP) can reach this region during systole [4]. Q continues to increase as ∆P 

decreases, for all values that were measured here. The performance curves for axial- 

and centrifugal-flow pumps are relatively typical in that the pressure for centrifugal-

flow pumps is reasonably flat and the pressure gradually decreases as flow increases, 

and the curves for axial-flow are much steeper and comparatively linear [2]. With the 

pressure-flow data taken on the continuous-flow mock loop, shown here, theoretical 

pump design parameters are analyzed and compared. 

 The Reynolds number, a dimensionless ratio of inertial to viscous forces, has 

been defined by equation 2.4, and while similar to the form for uniform flow within a 

pipe does not have the same connotation associated with laminar or turbulent flows. 

Reynolds numbers associated with pumps have more to do with pump size, cavitation, 

and thus, hydraulic efficiency [11]. Evaluation of Reynolds number under typical 

operational ranges is significant because it establishes a metric for drag at a device-

fluid interface. Table 2.1 contains the Reynolds number values over which each device 

was operated. Further, hydraulic efficiencies (equation 2.5) for each device at 

operational Re are plotted against flow coefficient in Figure 2.3. Of the four, C2 

achieves the highest ηh over the broadest range of φ, and A2 reaches the lowest peak 

ηh this time over the smallest range of φ. 
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Performance curves for any given impeller speed are unified into a single 

curve via the dimensional analysis for head and flow coefficients. The nondimensional 

performance curves for each device are shown in Figure 2.4a. The A1 and C1 devices 

show corresponding head versus flow properties, especially for the 0.5 < φ < 1.5 

regime. The other two curves imply greater and fewer hydraulic losses for the A2 and 

C2 pumps, respectively. Maximum ψ values, where φ = 0, are .45, .29, .37 and .57 for 

A1, A2, C1 and C2, respectively. Similarly, maximum φ values, where ψ = 0, are .22, 

.13, .20 and .50 for A1, A2, C1 and C2, respectively. 

 The hydraulic efficiency of a pump is the ability to conduct fluid with minimal 

loss. Understanding of hydraulic energy losses, or efficiency, is key to evaluating the 

global design of the fluid flow path. Hydraulic efficiency is not to be confused with 

overall system efficiency. For example, VAD systems require power supplies and 

controllers. Each system controller is designed separately, and therefore has a unique 

way of operating the pump. Pump impellers are connected to motors that induce 

rotation. The efficiencies of the motors and controllers contribute to the overall system 

efficiency, but are separate from the hydraulic efficiency. 

 The maximum hydraulic efficiency occurs at the same N, ψ and φ, regardless 

of Reynolds number, or impeller speed. The values of the nondimensional parameters 

for each device at peak efficiency are also presented in Table 2.1. ψ and φ points at 

peak ηh are plotted graphically along with nondimensional performance curves in 

Figure 2.4a, while Figure 2.4b displays the pressure-flow regimes represented by the 

most efficient specific speeds for each pump. Specific speed for a pump impeller is 

used to show pump characteristics over a range of pressure and flow values. During 
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design, specific speed is implemented to define physical properties and flow types for 

pumps. It is most intriguing to note that all four devices experience maximum ηh at 

nearly the same point where the ψ/φ ratio is approximately 1.7. While the ψ/φ ratio is 

similar for all four devices at peak ηh, the optimal operating flow regime for the A2 

device, is markedly different than that observed for the other three pumps. 

 Continual analysis of the dimensionless values from the pressure-flow 

performance curves can yield further insight to a pump’s functionality. Pump 

resistance is usually a positive value for design flow conditions, but can be negative at 

low flow rates [2]. An additional quantity, pump sensitivity, can be related from ψ, φ 

and Rp. High sensitivity values indicate that a pump will have a large change in output 

for a small change in pressure (equations 2.6-2.7). 

Pump sensitivity and pump resistance are important quantities that provide an 

understanding of how a device will behave under fluctuating operating conditions. 

Quantification of the details may produce a metric related to hemo- and/or bio-

compatibility. Figure 2.5 presents Rp and Sp as a function of φ and as a function of ψ 

for each of the evaluated devices. While the resistance and sensitivity functions for 

each pump vary, a general observation can be made that the continuous flow pumps 

show increasing resistance with increasing flow and decreasing head, and conversely, 

increasing sensitivity with increasing head and decreasing flow. Minimum resistance 

and maximum sensitivity for both A2 and C1 occur where φ = 0, and correspondently, 

maximum resistance and minimum sensitivity for both occur where ψ = 0. The other 

two devices exhibit similar behavior in general; however, upon closer inspection local 

minima and maxima can be found on the dimensionless functions of resistance and 
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sensitivity. Minimum resistance and maximum sensitivity occur at (ψ, φ) = (.28, .11) 

and (.56, .08) for A1 and C2, respectively. Whereas, the maximum resistance and 

minimum sensitivity are found at (.04, .21) and (.10, .38), respectively. 

 

2.5 Discussion 

 The effects and implications of our open-loop mock flow system are discussed 

herein. Theoretical pump design parameters using the pressure-flow data are analyzed 

and compared. Similarities between axial- and centrifugal-flow device hydraulic 

performance, as well as pump resistance and pump sensitivity are explored. 

As displayed in Figure 2.2, our open-loop mock flow system effectively 

achieves extensive pressure-flow regimes across both axial- and centrifugal-flow 

implantable blood pumps, demonstrating the effectiveness and benefit of using a 

slightly more complex system for hydraulic analysis. The open-loop flow system is 

capable of achieving ∆P values that are scientifically-relevant for a device that will be 

placed in parallel with the physiologic system. It is recommended that future analyses 

of such devices be done under conditions that resemble the open-loop flow system. 

Nondimensionalization of flow characteristics, by removing units that involve 

physical measures, can simplify and scale the hydrodynamic system. Additionally, 

further information regarding the performance properties of a system can be revealed. 

The dimensionless values outlined previously are common practice in fluid flow 

analyses. For example, the nondimensionalization of pressure-flow performance 

curves taken over several rotational speeds for a given rotodynamic pump will yield a 

single performance curve. From the dimensionless performance curve general 
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observations can be made regarding hydraulic losses that the device is subject to, and 

thus, hydraulic efficiency can be inferred. 

Several conditions can contribute to hydraulic loss, including friction at the 

fluid-pump interface, pump size, surface area and geometry, cavitation, turbulent flow, 

and more. The ideal, lossless pump will exhibit a straight line for the ψ–φ curve. 

However, in reality all pumps are subject to hydraulic losses, and thus, will be 

somewhere below the ideal ψ–φ line. Consequently, the further a dimensionless 

performance curve lays below the ideal straight line, the stronger the implication that 

the pump has higher hydraulic losses.  

Specific speed for a pump impeller is used to show pump characteristics over a 

range of pressure and flow values. During design, specific speed is implemented to 

define physical properties and types for pumps. An increase in pump size is said to 

increase the operating Reynolds number, and increase the hydraulic efficiency.
11

 The 

hydraulic efficiency of a pump is the ability to conduct fluid with minimal loss. 

Understanding of hydraulic energy losses, or efficiency, is key to evaluating the global 

design of the fluid flow path. Hydraulic efficiency is not to be confused with overall 

system efficiency. For example, VAD systems require power supplies and controllers. 

Each system controller is designed separately, and as such has a unique way of 

operating the pump. Pump impellers are connected to motors that induce rotation. The 

efficiencies of the motors and controllers contribute to the overall system efficiency, 

but are separate from the hydraulic efficiency. 

Physically speaking, the centrifugal-flow pumps employed here are not 

significantly greater in overall size than those designed for axial-flow, but Figure 2.4a 
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shows that they have greater capacity for pressure and flow. The average centrifugal 

and axial curves deduced from this figure demonstrate that the centrifugal curve would 

have greater (ψ,φ) values than that of the axial. This suggests that the centrifugal-flow 

pumps have fewer hydraulic losses, and thus greater hydraulic efficiency. However, 

the A1 and C1 devices yield similar dimensionless flow characteristics and hydraulic 

efficiency. The dimensionless performance curves for the A2 and C2 pumps are below 

and above, respectively, the region where A1 and C1 reside. An interesting finding is 

illustrated by comparing Figures 2.3 and 2.4 where hydraulic efficiencies for each 

pump are roughly correlated with the location of dimensionless performance curves. 

The internal flow-path volumes of both axial-flow pumps are relatively similar. 

The flow-path volumes of C1 and C2 devices are two and three times greater than the 

axial pumps, respectively. Hydraulic efficiency may be related to pump size, but this 

is not always readily apparent. In these results, a correlation between hydraulic 

efficiency and pump size is seen only when comparing axial-to-axial or centrifugal-to-

centrifugal. No association is observed when comparing axial-flow and centrifugal-

flow volume or size to efficiency or performance. This confirms the notion that 

several factors impact the efficiency of fluid flow, including pump size, blade 

geometry, surface area, maximum and minimum gap size, and more. 

A similar ψ/φ ratio for all four devices at peak efficiency is of great 

significance, and almost compels a conclusion that all pumps were independently 

designed to the same specification. However, upon examination of the operational 

range of the hydraulically efficient specific speeds, or design-specific speeds, it is 

noticeable that one of the axial-flow devices (A2) operates most efficiently in a 
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pressure-flow regime considerably apart from the other three devices. This shows that 

at least one of the devices was designed for a slightly different functional environment. 

However, it is worthy to note that hydraulic efficiency is not nor should it be the 

primary concern when designing a continuous flow blood pump. The primary 

objective for these devices is to move blood without causing hemolysis or thrombosis 

to the working fluid, so compromises in the fluid flow path are to be expected when 

dealing with a long term life support device. 

Generally, the continuous flow pumps show increased resistance with high φ 

and low ψ, and conversely, increased sensitivity with high ψ and low φ. Of particular 

interest is that C1 and C2 reveal much lower resistance, possibly due to the centrifugal 

flow path itself, than that within the realm of capability for A1 and A2. Assuming the 

human cardiovascular system is more compatible with flows corresponding to low φ, 

it would then behoove one to opt for a device with low resistance and high sensitivity. 

This being the case, the centrifugal-flow path may be the best suited for physiologic 

implantation. 

The resulting analyses presented here position dimensionless values and 

equations as the center of attention. Particular interest has been given to hydraulic 

efficiency of axial- versus centrifugal-flow devices. Head and flow coefficients, pump 

resistance and pump sensitivity have all been explored. However, our results should be 

interpreted with several caveats. 

First, the flow characteristics and physiological similarities for a mechanical 

pump, axial or centrifugal, when connected in parallel with a pulsating pump, such as 

the device configuration when implanted, is not evaluated here. Evaluation of pump 



25 

 

performance under pulsating preload and afterload conditions, could be highly 

beneficial when comparing devices to one another and to the native heart, and is 

recommended for future work. Second, this study examines the flow characteristics of 

different VADs under continuous flow conditions. Standard design practices for fluid-

pumping systems have been set up for constant flow relationships, and do not consider 

pulsatile conditions [1,2]. The difference in peak efficiency flow regimes between 

devices can be explained by the need to operate the device under a wide range of 

preloads and afterloads because the intended use in parallel with a human heart is not 

only for an individual human system, but also across a diverse array of the potential 

human population. Finally, hemocompatibility assessment of the devices is not carried 

out here. Damage to cellular structures within the transported fluid is another concern 

that VAD design should consider and the tradeoffs that it may impart to hydraulic 

efficiency. Only global performance of each device is assessed without consideration 

of local phenomenon such as backflow, turbulence, flow path design, surge, auto-

oscillation, etc. 

 

2.6 Conclusions 

 The open-loop flow system was successfully able to generate ∆P across the 

pumps at levels equal to or less than zero, thus making a more clinically-relevant 

assessment of pump function. A dimensionless assessment of the flow characteristics 

yields favorable results for the average of the centrifugal-flow devices as they 

demonstrate greater capacity, fewer hydraulic losses, and thus, greater hydraulic 

efficiency when compared to the axial-flow devices. The benefit of hydraulic 

efficiency may be associated with physical size or priming volume. Further, the 
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centrifugal-flow VADs demonstrate lower resistance, which implies greater sensitivity, 

than the axial-flow designs for low values of flow. Thus, from a purely hydraulic 

analysis point of view, we propose the centrifugal-flow pumps to be more effective 

than axial-flow devices. 
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Figure 2.1. Typical closed-loop flow system (a). Open-loop flow system designed to 

impose low and high extremes of pressure differential on tested ventricular assist 

devices (b). 



2
8

 

    

 
 

Figure 2.2. Characteristic pressure-flow curves for each VAD.  ∆P, pressure differential; Q, pump flow rate. 
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Figure 2.4. Dimensionless performance curves for each ventricular assist device 

marked with points of peak hydraulic efficiency (a).  Peak hydraulic efficiency 

specific speeds displayed against flow regime (b).  ψ, head coefficient; φ, flow 

coefficient; ηh, hydraulic efficiency; ∆P, pressure differential; Q, pump flow rate; N, 

specific speed. 
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Table 2.1. Reynolds number ranges for all recorded operational speeds for each device 

and calculated nondimensional parameters for each device at peak efficiency over 

entire operational range. Re, Reynolds number; N, specific speed; ψ, head coefficient; 

φ, flow coefficient. 

 

 Axial 1 

(A1) 

Axial 2 

(A2) 

Centrifugal 1 

(C1) 

Centrifugal 2 

(C2) 

Re range 

(x1000) 

17-28 23-34 33-123 47-79 

N 2.2 1.5 0.5 0.4 

ψ .22 .17 .23 .43 

φ .14 .07 .13 .26 

 

 



 

 

 

 

 

 

CHAPTER 3 

 

 

PRESSURE SENSITIVITY OF AXIAL-FLOW AND 

 

CENTRIFUGAL-FLOW LEFT VENTRICULAR 

 

ASSIST DEVICES 

 

 

Continuous-flow ventricular assist devices (CF-VADs) defy normal 

physiologic principles associated with pulsatile flow. Despite being programmed at set 

speeds, pump flow can be modified by variations in the pressure differential across the 

pump, termed pressure sensitivity (PS). Currently, PS has been reported using closed-

loop systems that are unable to provide physiologically-relevant assessment of PS or 

account for partially- or fully-unloaded ventricles. We report a unique model system to 

examine PS and its influence on efficiency of CF-VADs.  

A mock-circulation loop was designed that measures low and high extremes of 

pressure differential. Two axial-flow and two centrifugal-flow VADs were tested. 

Device output flow rate, preload, and afterload were measured and PS was calculated. 

Analytical models were implemented to study “fully-loaded,” “partially-unloaded,” 

and “fully-unloaded” cardiac cycles. 

Our open-loop model successfully generated physiologically-relevant pressure 

gradients across the pump. All devices exhibit highest PS during early diastole; 

however, average PS values of centrifugal-flow were 4x greater than axial-flow 
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devices. At clinically-relevant speeds under fully-unloaded conditions, where 

ventricular pressure never reaches the aortic pressure, average flow rate decreased by 

41%. The average maximum PS for the axial and centrifugal VADs under physiologic 

conditions was 0.08 and 0.30 L/min/mmHg, respectively. 

Compared to axial-flow pumps, centrifugal-flow VADs demonstrate increased 

PS at intermediate to low flow rates. Enhanced device PS allows for more effective 

self-regulation of device output, thus allowing a given VAD to better mimic the native 

heart under exercise conditions, and minimize undesirable effects, including 

ventricular suck-down or atrial collapse.  

 

3.1 Introduction 

 

During the cardiac cycle, the left ventricle undergoes large changes in pressure 

[LVP] compared to those experienced in the ascending aorta [AoP]. As the ventricle 

contracts during early systole, LVP increases prior to opening of the aortic valve (AV), 

followed by an equilibrated transaortic pressure gradient while the AV is open and 

subsequent ejection of blood from the LV to the ascending aorta [1]. This normal 

pattern of generating cardiac output in the cardiac cycle is significantly altered in 

patients with left ventricular assist devices (LVADs). In the earlier era of VADs, 

pulsatile devices essentially replaced myocardial function by working in series with 

the heart, thus bypassing the functional cardiac cycle [2-4]. The increasing use of 

continuous flow blood pumps has changed the way we approach patients with these 

devices by working in parallel with native heart function. Thus, effective cardiac 

output is dependent upon optimizing both device and native cardiovascular function.  
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 The transaortic pressure gradient (AoP – LVP) is greatest during end-systole 

and early diastole, where high arterial and decreasing ventricular pressures exist, and 

approaches zero during systole when the aortic valve is open. With continuous-flow 

pumps, the transaortic pressure gradient can have a significant impact on the output of 

the device [5]. Although not pulsatile by design, these pumps are sensitive to preload 

and afterload pressure variations [6]. At a constant impeller speed, the output flow rate 

(Q) of a VAD can change dramatically depending on the pressure differential (∆P) 

across the pump [7]. A device that is highly pressure sensitive will have a large change 

in Q for a small change in ∆P. Thus, pressure sensitivity (PS) is the rate of change of 

flow with respect to the rate of change of pressure. Computationally, this equates to 

the slope of the characteristic pressure-flow curve, or the first-derivative of flow with 

respect to pressure, which can be defined as dQ/d∆P. PS measurement is important 

because it signifies how responsive a device will be under certain operating conditions. 

Several studies have been undertaken to evaluate the PS of various VADs [8,9]. 

Few reports have been found where multiple devices are tested and analyzed under the 

same conditions [10]. Furthermore, pressure-flow characteristics for VADs are 

reported for a limited range of Q and ∆P values [11]. Finally, no reports exist that 

compute the theoretical Q and PS for a partially- or fully-unloaded ventricle.  

The lack of available data is related to device testing within a closed -loop 

system. A closed-loop mock circulatory flow system will not be able to simulate low 

or negative ∆P or negative flow due to physical, hydrodynamic limitations. Low ∆P 

has significant clinical and physiological importance because that is what is 

experienced by the mammalian circulatory system during systole. A closed-loop flow 
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system is one where the preload is dependent upon the generated afterload because 

they are directly connected, so preload or afterload cannot be adjusted without 

affecting the other. Therefore, all existing in vitro data with regards to continuous flow 

VADs are based on nonphysiologic modeling.   

Conversely, an open-loop system is free from dependency restrictions such that 

both preload and afterload are independently adjustable. During the systolic portion of 

the cardiac cycle the pressure differential between the ascending aorta and LV 

approaches zero, which is why measurement of flow characteristics at low or negative 

∆P is clinically significant. While systole is just fractions of a second, it still 

comprises approximately one-third of the cardiac cycle. As such, we sought to 

examine pressure-flow characteristics for both axial- and centrifugal-flow VADs 

within a wide range of ∆P values under uniform conditions, by means of a novel, 

open-loop flow system.  

 

3.2 Methods 

 

We analyzed four VADs, two with axial-flow design and two with centrifugal-

flow (or radial-flow) design. From here, the devices will be referred to as Axial 1 (A1), 

Axial 2 (A2), Centrifugal 1 (C1) and Centrifugal 2 (C2). A1 was operated between 

7000 and 13000 rpm at 200-rpm increments. A2 was operated between 8000 and 

12000 rpm in 1000-rpm increments. C1 was operated between 800 and 3000 rpm, and 

C2 was operated between 1800 and 3000 rpm, both at 200-rpm increments. 

A novel flow loop (Figure 3.1) was designed to measure pump preload, 

afterload, and output flow rate under various settings. The loop consisted of two 

reservoirs filled with a blood-analog fluid (~40% glycerin in water at 36 °C; Hi-Valley 
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Chemical, Centerville, UT) that had a dynamic viscosity of 3.6 cP. The upper reservoir 

made use of an adjustable weir to maintain a steady inflow pressure to the LVAD. 

Connections between components were done with Tygon® tubing (Saint-Gobain, 

Courbevoie, France). A manual gate valve was placed in series with the LVAD to 

adjust the resistance (afterload) for each pump speed. 

Pump preload, or inflow pressure (Pi), and pump afterload, or outflow pressure 

(Po) were measured with fluid-filled transducers (Edwards LifeSciences, Irvine, CA), 

and a pressure meter (Living Systems Instrumentation, St. Albans, VT). The pump 

flow rate (Q) was measured with an ultrasonic flow meter and flow probe (Transonic, 

Ithaca, NY).  Acquisition of flow meter and pressure meter data signals was performed 

at 40 Hz with a custom system (National Instruments, Austin, TX), and output to a 

comma separated values (csv) file. 

For data analysis and plotting, MATLAB (v6.5; MathWorks, Natick, MA) and 

a spreadsheet program (Excel 2007, Microsoft, Redmond, WA) were used. The 

relationship between Q and ∆P was extracted from the original 40 Hz csv files and 

tabulated in another spreadsheet file at 0.25-L/min increments for all applicable speeds. 

Pressure differential across the pump (∆P = Po – Pi), which represents the transaortic 

pressure gradient, was recorded manually in increments of 1 L/min to ensure the 

integrity of the data acquisition (DAQ) system. PS (dQ/d∆P) was calculated for all 

pumps at all speeds using a centered-finite difference approximation at 0.25-L/min 

increments. 

Generic waveforms representing aortic and left-ventricular pressures for fully-

loaded LV (minimal to no VAD support), partially-unloaded LV (partial VAD 
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support), and fully-unloaded (full support with VAD, where AV does not open) were 

employed to estimate the physiologic pressure gradient (AoP – LVP), which 

approximated the pressure differential across the pump. The pressure-flow data for 

each of the four LVADs was then used to estimate their flow rates subject to the 

hypothetical physiologically varying ∆P. This calculation was done with data from the 

A1, A2, C1 and C2 LVADs at 9000, 10000, 2000 and 2000 rpm, respectively. 

Pulsatility index (Qmax – Qmin / Qavg) was also computed for the predicted flow rates. 

Moreover, PS was gauged as a function of the input cardiac cycle. Pressure sensitivity 

values and flow rate values were compared with a one-way analysis of variance 

(ANOVA) technique using 95% confidence intervals. Statistical significance was 

considered at p < 0.05. 

 

3.3 Results 

 

Using our novel, open-loop flow system, we demonstrate the characteristic 

pressure-flow curves obtained for the two axial-flow and two centrifugal VADs 

(Figure 3.2). Generally, the performance curves for axial-flow devices are steeper and 

more linear than centrifugal-flow devices. A linear performance curve will maintain 

constant PS regardless of pressure or flow conditions. The centrifugal-flow pumps 

have a flat performance curve for low flow rates, and the pressure differential 

gradually increases for increasing flow. Performance curves for all devices have been 

characterized for flow rates at pressure differentials down to zero. Also, the line (CLL) 

along each set of performance curves represents the approximate lower limit of ∆P 

possible with a closed-loop flow system.  Our open-loop flow system is capable of 

generating ∆P values below that threshold. 
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Figure 3.3 displays variation in PS for each pump at various pressure 

differentials and flow rates. As indicative by the performance curves, the PS is greatest 

at low flow, and continually decreases for increasing flow. The maximum and average 

PS values for each device across all tested pressure and flow conditions are displayed 

in Table 3.1. Pressure sensitivity is significantly greater for centrifugal-flow pumps 

than for axial-flow (p<0.0001). 

Comparison of two devices at the same impeller speed (e.g., 9000 rpm) is 

difficult because the hydraulic performance is not likely to be comparable, especially 

when comparing axial to centrifugal devices. Each device has varying hydraulic 

performance due to physical characteristics. Thus, characteristic pressure-flow data are 

collected at a myriad of points in order to establish a baseline impeller speed for each 

device that yields comparable functionality. For virtual analysis, a speed was selected 

for each device based on clinical relevance and pressure-flow similarity. The pressure-

flow curves for each device at selected speeds are presented in Figure 3.4; A1 at 9000 

rpm, A2 at 10000 rpm, and C1 and C2 VADs at 2000 rpm. The displayed performance 

curves illustrate the variations of hydraulic performance present between various 

devices, even when pressure-flow values are relatively similar. We find these speeds 

suitable for comparison. 

Additional differences in pump performance were noticed when physiological 

transaortic pressure gradients were employed for comparison. Figure 3.5 shows three 

plots. First, aortic and left ventricular pressure waveforms used to estimate ∆P (AoP – 

LVP) through the fully-loaded cardiac cycle, similar to that explored by Khalil, et al 

[8]. Second, the flow rates were calculated for the A1, A2, C1 and C2 LVADs given 
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the fully-loaded cardiac cycle waveform. And third, the PS of the four VADs 

throughout the cycle. The magnitude of PS through the fully-loaded cycle is ¼x, 1.6x 

and 2.7x for the A2, C1 and C2 devices, respectively, when compared to the A1 

device magnitude. All four devices show highest sensitivity during early diastole, 

which is marked by the drop in flow rate in center of Figure 3.5. Similarly, Figure 3.6 

shows aortic and left ventricular pressure waveforms through the partially-unloaded 

cardiac cycle; the calculated flow rates for the VADs given the partially-unloaded 

cardiac cycle waveform; and the PS of the four VADs throughout the cycle. As before, 

the magnitude of PS through the partially-unloaded cycle is ¼x, 0.8x and 5.3x for the 

A2, C1 and C2 devices, respectively, when compared to the A1 PS magnitude. There 

is a mean increase of 8% for average flow rate, and a mean reduction of 30% for 

pulsatility index across all pumps going from fully-loaded to partially-unloaded cycle. 

Finally, Figure 3.7 shows aortic and left ventricular pressure waveforms 

through the fully-unloaded cardiac cycle; the calculated flow rates for the VADs given 

the fully-unloaded cardiac cycle waveform; and the PS of the four VADs throughout 

the cycle. Again, the magnitude of PS through the fully-unloaded cycle is ¼x, 5x and 

15x for the A2, C1 and C2 devices, respectively, when compared to the A1 PS 

magnitude. There is a mean reduction of 41% and 1% for average flow rate and 

pulsatility index, respectively, across all pumps going from partially-loaded to fully-

unloaded cycle. Of particular interest, the PS of the VADs increases by an average of 

66% going from partially-loaded to fully-unloaded cycle. Table 3.2 shows the average 

flow rate, pulsatility index (PI) and maximum and average PS for each VAD under 

both the fully-loaded, partially-unloaded and fully-unloaded cardiac cycles. 
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3.4 Discussion 

 

The concept of quantitative PS is exploited here to demonstrate the self-

regulating attribute of continuous flow VADs. Here we have demonstrated the 

capability of our novel, open-loop mock flow structure to generate clinically relevant 

pressure-flow conditions, heretofore not previously reported in the literature. Indeed, 

the performance curves go down to pressure differentials equal to zero. Clinically, the 

extremes are relevant to systole (high flow, uniform pressure), and other physiological 

conditions that may yield systemic conditions where pump suction or regurgitation 

may occur. Our data further demonstrate that centrifugal-flow pumps have a greater 

sensitivity to pressure than the axial-flow pumps, especially in the low and high 

extremes of flow rate. Finally, we demonstrate that centrifugal pumps demonstrate PS 

twice that of axial flow devices when exposed to conditions of both partially- or fully-

unloaded ventricles.  

All pumps exhibit a greater diastolic than systolic sensitivity of pump output 

(Q) to variations in transaortic pressure gradient. Further, the centrifugal-flow pumps 

show sensitivities 2-10 times greater than the axial-flow pumps during diastole. 

Ventricular suction and collapse is a clinically important problem in patients with 

LVADs. These events most likely occur during end-systole or early-diastole after the 

ventricle has contracted and the aortic valve has closed (LV isovolumetric relaxation 

phase), such that both the ventricular volume and internal pressure are minimal. An 

LVAD that is designed to have high PS during this critical time in the cardiac cycle 

could reduce the risk of suction, which is observed in the centrifugal pumps, most 

notably with C2. 
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Not only can PS imply a reduced risk of suction on the LV, but also suggests 

an increase in responsiveness during exercise. During exercise, enhanced venous 

return increases stroke volume and (with increased heart rate) cardiac output that 

accompany the higher metabolic rates. Any transformation of the venous compliance 

or peripheral vascular resistance involves a change to the pressure differential across 

the pump. Devices sensitive to alteration of the pressure differential will naturally 

respond with a modification of output respective of the external stimulation. 

The large magnitudes of PS values in the centrifugal devices are appealing, but 

must be tempered with clinical issues involved with patient management. In this study, 

changes in PS correlate with viscosity of the working fluid. That is, higher fluid 

viscosity correlated to lower PS. As device performance curves are reported in the 

literature, it is important to note that devices tested in water will exhibit characteristics 

implying greater PS than if it were tested with a blood-analog fluid of higher viscosity. 

Clinically, this also has an effect on the device performance over time. For example, 

when a patient’s hematocrit is low, the output of the pump will be more sensitive to 

variations in system pressure. 

One feature of this study that is unique with regards to device testing is 

demonstrating the performance and behavior of each VAD under clinically-relevant 

situations: loaded, partially-unloaded, and fully-unloaded conditions, respectively. 

While some patients require full unloading to provide necessary support, the majority 

of VAD patients likely live in a partially-unloaded state, whereby the VAD would 

reduce the maximum LVP level, but still allow the AV to open during systole [12]. 

Under this condition the pressure differential would reach a state of equilibrium (∆P = 
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0). Unloading the heart has been shown to have beneficial effects on LV function by 

improving cardiothoracic ratio, decreasing heart size, and increasing circulation [9]. 

Moving from a fully-loaded to a partially-unloaded condition gives way to moderate 

changes in pump performance, with a minimal increase in average flow, and 33% 

decrease of pulsatility index. That said, we observed several, relevant distinguishing 

features between partially-unloaded and fully-unloaded ventricle conditions. The 

maximum LVP level during a fully-unloaded condition is significantly lower than AoP, 

thus, not allowing the AV to open. With the AV closed, the transaortic pressure 

gradient never reaches zero. 

Both partial and full unloading resulted in sizeable decreases in average flow 

for all devices, and a substantial increase in average PS. C1 experiences the greatest 

relative increase of average PS, and interestingly, a relative increase in PS magnitude, 

which no other device exhibits. The average PS for A1, A2 and C2 also increase, but 

the magnitude, or range, of sensitivity values decreases. This is most likely due to the 

shape of the observed performance curve for each device at the applied range of 

pressure differentials for a fully-unloaded condition. 

Our data must be interpreted with several caveats. Clinically speaking, when a 

LVAD is initially connected to the circulatory system in a patient with end-stage heart 

failure, the ventricle is most likely to experience a fully-unloaded condition. As the 

ventricle recovers, it could move to the partially-unloaded condition. Here, the device-

centric analyses highlight a single operating speed for each device. However, we 

recognize that a partially-unloaded condition may occur at a lower operating VAD 

speed than that of a fully-unloaded condition. We felt it most significant to look at 
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each device at a single operating speed for this study. Further studies could be 

executed to model PS, flow and pulsatility as a function of speed. 

 

3.5 Conclusions 

 

In summary, the present study demonstrates that continuous flow VADs self-

regulate performance by adjusting device output via their individual sensitivity to 

pressure differential. We further show that although centrifugal-flow devices have 

similar PS to the axial-flow devices at higher flow rates (6-8 L/min), they have a 

significant difference in PS at intermediate to low flow rates, including those near 

standard physiological conditions. Further enhancements to PS could lead to self-

regulation of device output such that the pump would mimic the natural response of 

the native heart under exercise and rest conditions, as well as minimize undesirable 

effects such as LV wall suction or atrial collapse. 
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Figure 3.1. Novel open-loop flow system designed to impose low and high extremes 

of pressure differential on tested ventricular assist devices (VADs). 
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Figure 3.4. Characteristic pressure-flow curves for A1 at 9000 rpm, A2 at 10,000 rpm, 

and C1 and C2 VADs at 2000 rpm. ∆P, pressure differential; Q, pump flow rate. 
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Figure 3.5. Aortic pressure (AoP) and left ventricular pressure (LVP) in a fully-loaded 

ventricle (A). Calculated flow rates for A1 at 9000 rpm, A2 at 10,000 rpm, and C1 and 

C2 VADs at 2000 rpm (B). Q, pump flow rate. Variation in pump pressure sensitivity 

(L/min/mmHg) during the cardiac cycle (C). dQ/d∆P, pressure sensitivity. 
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Figure 3.6. Aortic pressure (AoP) and left ventricular pressure (LVP) in a partially-

unloaded ventricle (A). Calculated flow rates for A1 at 9000 rpm, A2 at 10,000 rpm, 

and C1 and C2 VADs at 2000 rpm (B). Q, pump flow rate. Variation in pump pressure 

sensitivity (L/min/mmHg) during the cardiac cycle (C). dQ/d∆P, pressure sensitivity. 
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Figure 3.7. Aortic pressure (AoP) and left ventricular pressure (LVP) in a fully-

unloade ventricle (A). Calculated flow rates for A1 at 9000 rpm, A2 at 10,000 rpm, 

and C1 and C2 VADs at 2000 rpm (B). Q, pump flow rate. Variation in pump pressure 

sensitivity (L/min/mmHg) during the cardiac cycle (C). dQ/d∆P, pressure sensitivity. 
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Table 3.1. Maximum and average pressure sensitivity (PS) values for each ventricular 

assist device across all tested pressure and flow conditions. Average values are 

presented with standard deviations (SD). 

 

 Axial 1 

(A1) 

Axial 2 

(A2) 

Centrifugal 1 

(C1) 

Centrifugal 2 

(C2) 

Max PS .13 .10 .25 1.00 

Avg PS .08±.02 .05±.02 .12±.08 .28±.34 

p .02 <.0002 <.02 <.0002 
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Table 3.2. Maximum and average pressure sensitivity (PS) values, average flow rate, 

pulsatility index (PI) for each VAD under the fully-loaded, partially-unloaded and 

fully-unloaded cardiac cycles.  Percent change for average pressure sensitivity, 

average flow and pulsatility index going from partially- to fully-unloaded condition. 

Average values are presented with standard devations (SD). 

 

Condition Device Axial 1 

(A1) 

Axial 2 

(A2) 

Centrifugal 

1 (C1) 

Centrifugal 

2 (C2) 

Impeller speed 

(RPM) 
9000 10000 2000 2000 

fully-

loaded 

Max PS 

(L/min/mmHg) 

.10 .05 .17 .29 

Avg PS (p<.0001) .06±.03 .04±.01 .07±.04 .11±.06 

Avg Flow (L/min) 

(p<.0001) 

6.1±2.2 4.6±1.2 6.8±1.5 7.3±2.4 

Pulsatility Index 

(PI) 

0.9 0.7 0.6 0.9 

partially-

unloaded 

Max PS .10 .05 .10 .50 

Avg PS (p<.0001) .05±.04 .04±.01 .06±.03 .12±.12 

Avg Flow 

(p<.0001) 

6.7±1.8 4.9±0.9 7.2±1.1 8.1±1.9 

Pulsatility Index 0.7 0.5 0.4 0.6 

fully-

unloaded 

Max PS .10 .05 .17 .33 

Avg PS (p<.0001) .10±.01 .05±.00 .11±.02 .19±.11 

Average Flow 

(p<.0001) 

3.3±0.8 3.2±0.4 4.9±0.8 4.3±1.3 

Pulsatility Index 0.7 0.3 0.4 0.8 

Percent 

change 

Avg PS +74 +33 +102 +55 

Avg Flow -50 -35 -33 -47 

Pulsatility Index 0 -38 +8 +24 

 

 



 

 

 

 

 

 

CHAPTER 4 

 

 

IN VITRO PULSATILITY ANALYSIS OF AXIAL-FLOW 

 

AND CENTRIFUGAL-FLOW LEFT VENTRICULAR 

 

ASSIST DEVICES 

 

 

Recently, continuous-flow ventricular assist devices (CF-VADs) have 

supplanted older, pulsatile-flow pumps, for treating patients with advanced heart 

failure. Despite the excellent results of the newer generation devices, the effects of 

long-term loss of pulsatility remain unknown. The aim of this study is to compare the 

ability of both axial and centrifugal continuous-flow pumps to intrinsically modify 

pulsatility when placed under physiologically diverse conditions. Four VADs, two 

axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. 

Each VAD was operated at a constant impeller speed over three hypothetical cardiac 

conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was 

compared for each device under each condition. Centrifugal-flow devices had a higher 

PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 

1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under 

hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal 

pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 

0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs 
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were capable of maintaining some pulsatile-flow when connected in parallel with the 

mock ventricle. It is concluded that centrifugal-flow devices outperform the axial 

pumps from the basis of PI under tested conditions.  

 

4.1 Introduction 

 

Mechanical circulatory support is an important and increasingly prevalent 

therapy for patients with advanced heart failure. Ventricular assist devices (VADs) are 

broadly distinguished as either volume-displacement (pulsatile-) or continuous-flow 

pumps. The advantages and disadvantages of pulsatile versus non-pulsatile blood flow 

have been chronicled and deliberated for decades [1,2]. However, the acceptance and 

increasing use of continuous-flow systems has come about by ongoing research 

demonstrating excellent recovery of failing end-organs and enhanced survival [3-5]. 

Rotary VADs have alleviated several concerns that earlier volume-displacement 

pumps experienced, including efficiency [6], anatomic fit [7], durability [8], hemolysis 

[9], and reliability [10]. Physically, the continuous-flow pumps have traded in a 

decrease in pulse pressure for a smaller sized device. With the lasting effects of 

chronic non-pulsatile flow unknown and the wide spread and increasing use of these 

devices, examination of VAD responses to inherent fluctuations in preload and 

afterload, and performance during moderate pulsatile-flow is clinically relevant. 

As the designs of CF-VADs continue to evolve, maintaining or producing 

pulsatile flow is a sought-after positive feature. Quantifying the level of pulsatile-flow 

through a CF-VAD establishes a metric by which different devices can be compared. 

Pulsatility index (PI) is defined as a measurement for variability of the fluid flow rate. 
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PI is calculated to relate devices to the level of pulsatile flow that is generated under a 

given condition. Some CF-VADs report PI on the system monitor and use it for speed 

control [11,12]. Even if PI is not reported, an estimated flow rate usually is, so it is 

possible to estimate PI as the amplitude in flow rate varies. 

This author and others have observed clinically that various CF-VADs are 

capable of greater PI than others. To date, however, no reports exist that 

experimentally contrast multiple continuous-flow devices under pulsating-type, hence 

physiologic, conditions. Comparison of implanted devices involves too many variables 

for direct scientific analysis, and if attempted would require a very large sample group 

to be statistically viable. In vitro experiments designed to analyze VAD performance 

under pulsating pressure and flow will show how they compare to one another under 

physiologic conditions. Clinically, we are faced with real, important challenges in 

patient management based on both the loading (volume status) and unloading 

(hypertension) conditions of the ventricle. This study investigates the variations in in 

vitro pulsatility characteristics generated by four CF-VADs, two axial-flow type and 

two centrifugal- (or radial-flow) design. 

 

4.2 Methods 

 

The mock circulation system (Figure 4.1) consists of atrium (LA), ventricle 

(LV), and lumped systemic (SCC) and pulmonary (PCC) compliance/resistance 

chambers, similar to that described by Pantalos, et al. [13], hybridized with the open-

loop flow system described in Chapter 2. Both artificial atrium and ventricle are made 

of flexible polyurethane sacs, with the ventricular sac housed in a pressurization 
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chamber. The ventricle top supports mounting for inflow (mitral) and outflow (aortic) 

prosthetic valves. Porcine pericardial valves (Baxter, Deerfield, IL) are employed for 

this experiment. Contraction and pulsatile flow is sustained by connection of the 

ventricular chamber to a pneumatic controller. Additionally, the loop employs 

reservoirs filled with a blood-analog fluid (~40% glycerin in water at 36 °C; Hi-Valley 

Chemical, Centerville, UT) with a dynamic viscosity of 3.6 cP. All connections 

between chambers and reservoirs are made using Tygon® tubing (Saint-Gobain, 

Courbevoie, France). A manual gate valve was placed after the SCC to adjust the 

resistance (afterload). 

With the mock circulation loop capable of pulsatile pressure and flow, VADs 

are tested by simulated LV apex cannulation and aortic anastomosis. The devices 

under analysis are referred to as Axial 1 (A1), Axial 2 (A2), Centrifugal 1 (C1) and 

Centrifugal 2 (C2). Investigation is carried out on each device under three pulsatile 

conditions: normo-tensive, hypertensive, and hypotensive. Pressure values significant 

and adjustable to each cardiac condition are displayed in Table 4.1. All three 

conditions maintain a uniform beat rate of 100 beats per minute (bpm), and a stiff 

systemic compliance of 0.5 mL/mmHg. 

The pump flow rate (Q) was measured with an ultrasonic flow meter and flow 

probe (Transonic, Ithaca, NY). Pump preload, or inflow pressure (Pi), and pump 

afterload, or outflow pressure (Po) are measured with fluid-filled transducers (Edwards 

LifeSciences, Irvine, CA), and a pressure meter (Living Systems Instrumentation, St. 

Albans, VT). Acquisition of flow meter and pressure meter data signals was 
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performed at 40 Hz with a custom system (National Instruments, Austin, TX). For 

data analysis and plotting, MATLAB (v6.5; MathWorks, Natick, MA) and a 

spreadsheet program (Excel 2007, Microsoft, Redmond, WA) were used. 

Each analysis is done at a single impeller speed for each pump. Because of the 

inherent differences between axial- and centrifugal-flow pumps, running all four 

devices at the same speed (rpm) is not feasible for allowing suitable comparisons. 

Thus, speeds were selected for each pump that had been previously determined by 

comparison of pressure-flow performance curves, as well as clinical experience 

(Chapter 3). Speeds selected for A1, A2, C1 and C2 pumps were 9000, 10000, 2000 

and 2000 rpm, respectively. 

 

4.3 Calculations 

 

A portion of the captured data yields a set of points showing the variability of 

flow rate over time. The data will be used to calculate pulsatility index for flow (PIQ), 

which is the difference between maximum and minimum flow rates divided by the 

average flow rate, or equation 4.1. Choi, et al. described another useful pulsatility 

metric as the pulsatility ratio [14,15]. The pulsatility ratio (Rpul) is a ratio of pulsatility 

indices for flow and pressure (Rpul = PIQ / PI∆P). For this the preload and afterload data 

points were used to compute a pressure differential waveform against time. From the 

pressure differential waveform, a pulsatility index for pressure differential (PI∆P) will 

be computed via equation 4.2. The calculations described here will be used to assess 

the level of pulsatile flow that the analyzed continuous-flow devices are able to 

generate while connected in parallel with a synthetic heart. 
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avg

Q
Q

QQ
PI minmax −

=    (4.1) 

avg

P
P

PP
PI

∆

∆−∆
=

∆

minmax    (4.2) 

Continuous flow rate and pressure differential data are presented as mean ± 

SD. Percentages are used for categorical data. Results were compared by t-test or by 

one-way analysis of variance (ANOVA). Statistical significance was considered at p < 

0.05. 

 

4.4 Results 

 

Initially, it was determined to be necessary to create a physiologic in vitro 

model system that allows for the dynamic, rather than static, testing of the axial- and 

centrifugal-flow devices. Figure 4.2 graphically depicts three clinically-relevant 

conditions: normo-tensive, hypertensive, and hypotensive. As demonstrated, the peak 

systolic left ventricular pressure (LVP) exceeds the nominal aortic pressure (AoP) 

signifying that the aortic valve (AV) continues to open for all three conditions. 

Opening of the AV during VAD implantation may also be referred to as partial-

support, as opposed to full-support, where the AV does not open. The first condition, 

normo-tensive, was selected as a partial-support baseline. The second and third 

conditions are high and low variations, respectively, for relative pressures. As 

expected, the hypertensive case shows the largest diastolic pressure differentials of the 

three, with the hypotensive case showing the smallest. All four pumps were subjected 

to each of the three pulsatile cardiac conditions on the mock circulation loop. 
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The pulsatile Q and ∆P waveforms measured on each device under all 

conditions on the mock loop are shown in Figures 4.3 – 4.5. The waveforms are 

displayed over a brief three-second window during the operation of each device. With 

all devices the peak in Q coincides with the dip in ∆P. Thus, highest flow occurs 

during systole when the AV is open and the transaortic pressure gradient is minimal. 

Data from the waveforms is used to compute pulsatility characteristics, which are 

presented in Table 4.2. 

Under the normo-tensive condition, (Figure 4.3), the average Q for axial 

devices is slightly greater (10%) than centrifugal ones; however, the PIQ and Rpul is 

much greater for centrifugal devices. PIQ was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial 

and centrifugal groups, respectively (p < 0.01). Similarly, Figures 4.4 and 4.5 show 

pulsatile Q and ∆P waveforms for each pump under the hypertensive and hypotensive 

models, respectively. A point of interest under the hypertensive case shows that both 

centrifugal devices experience negative, or reverse flow, also known as pump 

regurgitation. Negative flow can have a significant impact on the physiological 

system, as well as on computation of PI. PIQ and Rpul of centrifugal devices under 

hypertension is double that of the axial pumps. PIQ was 1.90 ± 0.16 and 4.21 ± 0.29 

for the axial and centrifugal groups, respectively (p = 0.01). 

No statistical significance was seen when comparing the Q or ∆P under 

normo-tensive or hypertensive conditions. However, hypotension shows variation in 

mean Q and ∆P for A2 (further illustrated in Figure 4.6). The similarity between Q 

and ∆P yields PIQ that is nearly uniform between the pumps: 0.73 ± 0.02 and 0.78 ± 
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0.02 for the axial and centrifugal groups, respectively (p = 0.13). Interestingly, Rpul for 

the centrifugal devices remain above those yielded by axial-flow pumps. Rpul was 0.50 

± 0.05 and 0.77 ± 0.06 for the axial and centrifugal groups, respectively (p < 0.04). 

Figure 4.6 presents the ∆P and Q relationship for each device under all three 

simulated cardiac conditions. The pressure-flow performance curve for each device 

follows a clockwise loop, with systole covering the right and lower portions of the 

loop and diastole over the left and upper sections. The size of a performance loop is 

directly related to the amount of hydraulic power supplied by each device. Hydraulic 

power, calculated by integrating the area within the performance loops, is displayed in 

Figure 4.7. All devices show distinctively greater power in hypertension, and lower 

power in hypotension. A1 is markedly lower than the other three devices in all 

conditions, except for C1 under hypertension. However, power differences between 

the groups (axial vs. centrifugal) are not statistically significant. 

 

4.5 Discussion 

 

 The common goal of all VADs is to augment systemic cardiac output and 

reduce the load on the ventricle during the cardiac cycle without leading to significant 

biological or hematological complications. Accomplishing this goal while maintaining 

evolutionarily-preserved physiology, i.e., pulsatility, may influence the ability of these 

devices to provide beneficial and durable support for the advanced heart failure 

patient. Comparative efficacy of pulsatile- and continuous-flow VADs have 

extensively documented their effects on ventricular unloading [16,17],
 
hemodynamics 

[18,19], end organ function and microcirculation [20],
 
as well as vascular reactivity 
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[21]. While continuous-flow devices are not pulsatile by design, it is hereby shown 

that some designs exhibit the ability to be more pulsatile than others. 

 This study compares pulsatility characteristics of two axial-flow and two 

centrifugal-flow VADs under varying physiologic conditions. The centrifugal-flow 

device design is shown to produce greater pulsatile flow than the axial-flow device, 

when connected in parallel with a synthetic, pulsating ventricle. The difference is most 

notable under low-flow, high-pressure circumstances, which agree with typical design 

environment settings for centrifugal-flow pumps [22]. 

 Further, this study shows that pulsatility ratio is higher in the centrifugal rather 

than the axial-flow devices. Choi, et al. show that ventricular suction events occur 

with a decrease in Rpul, and state that it is a more reliable metric to mitigate suction 

events than is the PIQ metric [14]. It is hereby postulated that Rpul can be employed as 

a qualitative metric to predict which device design will be more or less prone to 

alleviate suction events. Ultimately, suction events are a function of patient anatomy, 

physiological condition, inflow orientation and more. However, Rpul should be 

considered as a viable metric that may abate the occurrence of such events. 

The influence of VAD therapy on positive cardiac remodeling and 

improvement in LV function remains an active, and often disputed, field of 

investigation [23,24]. It is unknown to what extent the differences observed in PIQ 

between the axial-flow pumps and centrifugal-flow pumps have on the potential for 

LV recovery. Recovery is thought to be associated with unloading the LV. However, 

long-term full-support, or complete unloading, where the aortic valve ceases to open 
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during the cardiac cycle, may lead to muscle atrophy. This study does not consider the 

full-support case, to which many VAD recipients are subject immediately after 

implantation. This study only considers partial-support for all analyzed cardiac 

conditions, which may be preferred for long-term support. More volume unloading 

could have been achieved by increased impeller speed in each device; however, speeds 

common to current clinical implementation were employed. 

The ∆P-Q performance loop illustrates the considerable distinction between 

systole and diastole that a pump experiences during implantation. Typical in vitro 

analysis, under continuous-flow conditions, yields pressure-flow performance to be a 

single curve for a given impeller speed [25]. However, this study shows that the 

clinical application of the continuous-flow rotary pump connected in parallel with a 

pulsing system yields a noticeably altered performance curve, or in this case, 

performance loop. This illustrates the dynamic environment to which the VAD is 

subject. End-diastole to early-systole appears to be similar to steady-state 

hydrodynamic performance curves in most cases, but end-systole to early-diastole is 

divergent. With LVP alternately increasing and decreasing throughout the cardiac 

cycle, the output variable(s) [Q, AoP] form a rate-dependent hysteresis loop. The 

hysteresis loop occurs due to the relative sinusoidal waveform oscillations of ∆P and 

Q being out of phase with one another: that is, ∆P increases while Q decreases, and 

vice versa, which is due to overall dynamic lag in the system. The lag is due, in part, 

to the compliant nature of the various chambers throughout the experimental test loop. 
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Analogous alteration of pressure and flow is expected to be present in the implanted 

configuration. 

 

4.6 Conclusion 

 

In conclusion, this study indicates that both axial and centrifugal continuous-

flow pump designs maintain some pulsatile flow when connected in parallel with the 

ventricle. Of the two designs, the centrifugal-flow provides significantly greater 

pulsatility index when exposed to physiologic conditions of varying preload and 

afterload. Further, the pulsatility ratio exhibited by the centrifugal-flow designs lead us 

to believe that they are more likely to abate suction events. Improved response to 

changes in left ventricular pressure may continue to increase pulsatility of continuous-

flow devices. 
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Figure 4.1. Schematic of mock circulation loop with pulsatile capability. PCC/SCC, 

pulmonary/systemic compliance chamber(s); LA, left atrium; LV, left ventricle. Not 

shown: unidirectional pericardial valves at “top” of LV to represent mitral and aortic 

valves. 
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Figure 4.2. Oscillating pressure waveforms associated with each simulated cardiac 

condition: normo-tensive (a), hypertensive (b), and hypotensive (c). AoP, aortic 

pressure, LVP, left ventricular pressure [mmHg]. 
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Figure 4.6. Pressure-flow (∆P-Q) performance curves for all four devices under the 

three tested conditions. Q, flow rate [L/min]; ∆P, pressure differential [mmHg]. 
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Figure 4.7. Hydraulic power supplied by each VAD in a typical cycle under the 

pulsatile cardiac models [mW]. 
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 Table 4.1. Cardiac conditions for pulsatile flow analysis. LVP, left ventricular 

pressure [mmHg]; LAP, left atrial pressure [mmHg]; MAP, mean arterial pressure 

[mmHg]. 

 

Condition Model LVP LAP MAP 

1 Normo-tensive 110 15 90 

2 Hypertensive 150 15 120 

3 Hypotensive 80 5 60 
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Table 4.2. Flow rate, pressure differential, and pulsatility results for axial- and 

centrifugal-flow devices under the pulsatile cardiac models. Q, flow rate (L/min); ∆P, 

pressure differential (mmHg); PIQ, flow pulsatility index; Rpul, pulsatility ratio. One-

way ANOVA was used to Q and ∆P across both devices and conditions, with p-values 

for column data in the last two rows. *Indicates significant difference across row 

(single condition). †Indicates significant difference among column (single device). 

 

Condition Metric Axial 1 

(A1) 

Axial 2 

(A2) 

Centrifugal 

1 (C1) 

Centrifugal 

2 (C2) 

Speed 9000 10000 2000 2000 

1 

Q ± SD 4.8±1.6 3.9±1.4 3.5±2.0 3.8±2.0 

∆P ± SD 55±24 66±28 68±24 64±29 

PIQ 0.96 1.00 1.49 1.51 

Rpul 0.56 0.80 1.40 1.04 

2 

Q ± SD 3.4±2.5† 3.1±2.1 1.9±3.1† 2.2±3.2† 

∆P ± SD 70±38 81±40 82±32† 73±41 

PIQ 2.01 1.79 4.41 4.01 

Rpul 1.03 1.25 3.96 2.17 

3 

Q ± SD 

(p<0.0004) 

5.0±1.3 3.4±0.9* 4.5±1.3 4.6±1.3 

∆P ± SD 

(p<0.03) 

53±19 47±23*† 59±18 63±21 

PIQ 0.74 0.72 0.76 0.80 

Rpul 0.54 0.47 0.81 0.73 

ALL 
Q p<0.01 p=0.20 p=0.001 p=0.002 

∆P p<0.09 p=0.001 p<0.01 p<0.50 

 



 

 

 

 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 Conclusions 

 

This dissertation has resulted in three original manuscripts submitted to various 

peer-reviewed journals for publication consideration. Further, an open-loop mock 

circulatory system has been developed, which is capable of independent preload and 

afterload regulation that is able to generate low to negative pressure differentials, in 

addition to high pressure differentials, across tested ventricular assist devices (VADs). 

In addition, three hypotheses were tested: 

• Hypothesis 1 stated that centrifugal-flow VADs will have higher hydraulic 

efficiency over axial-flow. As shown in Chapter 2, the centrifugal-flow devices 

demonstrated greater capacity, fewer hydraulic losses, lower resistance, and thus, 

greater hydraulic efficiency when compared to the axial-flow devices. 

• Hypothesis 2 stated that centrifugal-flow VADs will be more pressure sensitive 

over axial-flow. Based on the results and discussion in Chapter 3, the centrifugal-flow 

devices have similar pressure sensitivity to the axial-flow devices at higher flow rates 

(6-8 L/min), they have a significant difference in pressure sensitivity at intermediate to 

low flow rates, including those near standard physiological conditions. 
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• Hypothesis 3 stated that centrifugal-flow VADs will have greater pulsatility 

over axial-flow. As publicized in Chapter 4, both the axial- and centrifugal-flow 

devices are capable of maintaining some level of pulsatile flow when connected in 

parallel with a pulsating ventricle model. However, the centrifugal design exhibits 

significantly greater pulsatility index and pulsatility ratio under physiological 

conditions of varying preload and afterload. 

Initially, the work was focused on flow characteristics under steady-state, 

continuous-flow conditions. In Chapter 3, the steady-state data was used to create a 

computational model of varying flow. The following chapter employed experimental 

methods to analyze, validate, and discuss device performance under an oscillating 

pressure and flow environment, analogous to the implanted configuration. All 

statistical analyses were carried out by means of t-test or one-way analysis of variance 

(ANOVA). Statistical significance was considered at p < 0.05. 

In conclusion, the centrifugal-flow pumps show considerable hydraulic 

advantages under physiologic conditions. Further, the developed mock loop is capable 

of generating pressure differentials important to proper modeling of the physiological 

system, and to device performance characterization testing. 

 

5.2 Limitations 

 

Various caveats and limitations for each of the studies in this manuscript are 

reported within respective chapters.  Here some global constraints are outlined 

pertaining to the entire work contained in this dissertation. First, only a single speed 

was employed for analysis of each device. Care was taken, both hydrodynamically and 
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clinically, to ensure that selected speeds would be employable for device comparison. 

Second, various metrics (pressure sensitivity, pulsatility index, pulsatility ratio, etc) 

may have an impact on biological or hematological compatibility. However, these 

tests were all carried out in vitro with a working fluid hydraulically similar to blood, 

but different otherwise. 

Each flow loop used in the studies contained within this dissertation, while 

fulfilling the design intent, is by no means exact in modeling the physiologic 

circumstance. Further, the theoretical models for ventricular behavior are only 

speculative in nature. The models do mimic some natural occurrences, but are only 

used as a generic set of data to compare device performance. 

Finally, as outlined in the first chapter, there are multiple “generations” used to 

classify VADs. The devices used here fall under both second and third generation 

devices. Both axial-flow devices employ a magnetic motor and mechanical 

(contacting) bearing within the blood flow path of the device, classifying them as 

second generation. The two centrifugal-flow pumps also have magnet-driven motors, 

but do not use mechanical bearings. Instead, the devices rely on magnetic levitation or 

a hydrodynamic bearing. Additionally, only one of each device has been tested. It is 

assumed that the device manufacturers apply a variability tolerance control limit on 

device performance. Thus, the performance noted in this work would be subject to 

some statistical window of variability, of which only a single point of reference is 

concluded here. 
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5.3 Suggestions for Future Work 

 

 The relevance of conclusions made herein should be further studied. A few 

suggestions for future work are outlined below. 

• Multiple speeds: The data collected and presented herein could benefit by 

supplemental studies carried out in the same manner but using additional impeller 

speeds to monitor the impact of speed metrics such as pressure sensitivity and 

pulsatility index. 

• Mulitple designs: This study employs two axial-flow and two centrifugal-flow 

blood pumps. Collecting similar data on other pump designs (axial-, centrifugal-, and 

mixed-flow) could yield further validation of the conclusions. 

• Physiologic conditions:  To gain insightful data on device performance, 

additional settings could be designed on the pulsatile-flow mock circulation loop to 

mimic other physiological conditions not modeled here. 

• Ventricular unloading, etc (in vitro): It would be useful and clinically-relevant 

to study device performance for ventricular unloading, pump occlusion, adverse 

events, and other situations pertinent to the implantable configuration.  For example, 

on the pulsatile-flow mock loop, the pressures and flows could be measured and 

compared under conditions such as: pump on (baseline), pump off (pump failure), 

pump on with aortic valve occluded (aortic stenosis), pump on with nonclosing aortic 

valve (aortic regurgitation), and pump on with inflow directed toward ventricle wall 

(ventricular suction). 
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Additional studies could be carried out in a more multidisciplinary approach. 

The following would be based on the availability of patient data and other resources 

necessary for in vivo experiments and data collection. 

• Statistical design of study: In vivo data from multiple patients and statistical 

modeling (design of experiments, etc) capability coupled with clinician input could 

add knowledge to the scientific community regarding the application of axial- and 

centrifugal-flow device differences. This could be done for a number of metrics, 

including ventricular unloading, hemodynamics, end organ function, microcirculation, 

biocompatibility, and hemocompatibility. 


