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ABSTRACT

A computationally efficient variational analysis sggm for two-dimensional
meteorological fields is developed and describduls @nalysis approach is most efficient
when the number of analysis grid points is muclgdarthan the number of available
observations, such as for large domain mesoscaéysms. The analysis system is
developed using MATLAB software and can take adsgatof multiple processors or
processor cores. A version of the analysis sydtas) been exported as a platform
independent application (i.e., can be run on Wirgldunux, or Macintosh OS X desktop
computers without a MATLAB license) with input/outp operations handled by
commonly available internet software combined vd#ta archives at the University of
Utah.

The impact of observation networks on the metegio& analyses is assessed by
utilizing a percentile ranking of individual obsation sensitivity and impact, which is
computed by using the adjoint of the variationatfate assimilation system. This
methodology is demonstrated using a case studyefanalysis from 1400 UTC 27
October 2010 over the entire contiguous UnitedeStalomain. The sensitivity of this
approach to the dependence of the background @sv@riance on observation density is
examined. Observation sensitivity and impact previdsight on the influence of

observations from heterogeneous observing netwagksvell as serve as objective



metrics for quality control procedures that may help to identify stations with significant

siting, reporting, or representativeness issues.
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CHAPTER 1

INTRODUCTION

Background and Moativation

High spatial and temporal objective surface analys@ve become increasingly
vital during the past decade. Such mesoscale awmlgsee needed in nowcasting and
short-range forecasting for wind power manageméatisportation safety, wildfire
management, dispersion modeling, as well as defappications (Horel and Colman
2005). Some of these high resolution real-time abje analyses are generated by tools
that are not part of a fully integrated analysigtast data assimilation cycle, as most
numerical models fail to capture adequately mansfase weather features due to
insufficient spatial resolution as well as incontel@arameterization of boundary layer
processes (Uboldi et al. 2008; Glowacki et al. 20¥rdistead, surface grids from short-
range forecasts are often used as a starting poitite objective analysis process and
then adjusted on the basis of high density mesaredrvations.

Lazarus et al. (2002) reviewed many of the opemati@nd research mesoscale
analysis systems available during the latd 26ntury. Some of these systems are no
longer undergoing further development or have befficially retired. Examples of
current operational high resolution objective asafydeveloped internationally include

the Vienna Enhanced Resolution Analysis (VERA; rateker et al. 2006) and the



Integrated Nowcasting through Comprehensive AnglyfNCA; Haiden et al. 2010)

systems for Austria and the Mesoscale Surface Amalyystem (MSAS; Glowacki et al.
2011) run over Australia. All 3 of these analysistems incorporate high density
mesonet observations and generate surface analfysesnperature, moisture, and wind
at resolutions of 1-4 km. Mesoscale objective agialgystems available in the United
States of particular note include MatchObsAll (Koi2003), the Space and Time
Multiscale Analysis System (STMAS; Xie et al. 201aphd the Real-Time Mesoscale
Analysis System (RTMA; de Pondeca 2011). STMAS tredRTMA are run at regular

intervals (15 minutes for STMAS; 1 h for the RTM#&yer the contiguous United States
(CONUS) domain. MatchObsAll is run at the discretiof National Weather Service
(NWS) forecasters over local domains, which typjcaxtends slightly beyond their

areas of forecast responsibility. MatchObsAll dnel RTMA are used operationally by
NWS forecasters to help create and verify high leggm gridded forecasts of near-
surface conditions across the United States (GdalanRuth 2003).

The methodologies used by these analysis systemb&e&aategorized into two
general classes. The first type consists of infatfom techniques (VERA, spline; INCA,
inverse distance; and MatchObsAll, serpentine quthiat strive to have the analysis
agree very closely with the available observati(idaley 1991). These approaches tend
to be computationally efficient and work very wethen the observations are spread
relatively uniformly across the analysis domain andneous observations are identified
and rejected as part of preprocessing quality obpiiocedures. These approaches tend
to suffer if the density of observations varies @lydwithin the analysis domain as the

interpolation techniques may tightly constrain #relysis where the observations are



plentiful leading to overfitting in nearby data daiegions (Myrick et al. 2005; Barker et
al. 2007). Approaches that fall within the secordeyal class of analysis system (MSAS,
optimum interpolation; RTMA, two-dimensional vai@tal, 2DVar; and STMAS, three-
dimensional variational, 3DVar) assume that obsema may contain errors arising
from the representativeness of the observationsiwtheir surrounding environment as
well as instrumentation errors (Daley 1991; Kaln2§03). These approaches are
particularly appropriate for analysis systems tha&ly on observations from
heterogeneous networks with differing quality cohstandards that are often distributed
unevenly within the analysis domain.

The RTMA serves as a reference analysis systerthéoresearch undertaken in
this study. The National Centers for EnvironmerRatdiction (NCEP) developed the
RTMA to support the needs of NWS forecasters (Poads al. 2011). The RTMA is an
objective surface analysis system with the abildyassimilate tens of thousands of
surface observations collected from many diffedatt providers to yield analysis grids
of 2-m temperature, 2-m dewpoint, surface pressame, 10-mu andv winds over a
CONUS domain as well as Alaska, Hawaii, Puerto Raod Guam domains. The
analysis grids of the RTMA at resolutions of 2.5xda&-km conform to the National
Digital Forecast Database (NDFD) grid describedtahn and Ruth (2003).

The computational resources required to computeostade surface analyses
such as the RTMA (with ~ZOgridpoints) are considerable. In addition, techei to
manage appropriately the diversity of observati@ssets that lead to variations in data
density and quality have heretofore remained |grgelexplored. Tyndall et al. (2010)

examined the sensitivity of the RTMA and a compbr&bVar system to assumptions



about the observational and background error camnees in part as a function of
observational type. Mesoscale data assimilatioreniép to a great extent on the number

of observations available to modify the specifieathground field. For example, the

5-km resolution RTMA has approximately 15,000 scefeobservations available to
adjust the background fields at over 700,000 gtinigp while nearly 2.4 million
gridpoints are required for the 2.5-km resoluticdNdJS RTMA. In addition, since these
~15,000 surface observations are not evenly spit@adighout the entire analysis grid
and are often clustered near urban areas, the mummibebservations providing
independent observations is often substantially. les

The Integrated Data Influence (IDI), as describgdJboldi et al. (2008), can be
used as a nondimensional measure of data densgyreF1.1 depicts the IDI of all
surface observations used by the RTMA to compuge 100 UTC 27 October 2010
temperature analysis, using the RTMA’s assumpti@garding the observational and
background error covariances, i.e., the factorsdffact the influence of observations on
the analysis. Subject to the aforementioned assansgptelated to the error covariances,
regions of the domain with IDI values approachinge chave more complete data
coverage, while regions with low IDI values havevfebservations available. The
inequitable distribution of observations is of cemt everywhere, but the complex
underlying terrain of the western United Statesultesin localized microclimates that
remain difficult to resolve on the basis of thegama observational network. Proposed
improvements to the current approach through tlveldpment of a Nationwide Network

of Networks (NNoON; National Research Council 20@9%¢ unlikely to provide the



number of observations necessary to resolve dliefe local weather features around the
country.

Variational data assimilation systems suffer fradme nhecessity to specify the
spatial scales of the background error covariaBpecifying large spatial scales for those
errors appropriate for regions where few obseruatiare available may lead to the
inability to capture small-scale structures evidendata-rich areas. For example, Figure
1.2 presents an artificial 2-m temperature analgsis corresponding analysis increments
(adjustments to the background field) where a iredbt dense observation network is
embedded within a data sparse region. All of theeolations (outlined circles) in Figure
1.2a generally have good agreement with each o#xeept at the very center of the
observing network, where there are three obsemstithat are warmer than those
surrounding it. The temperature analysis in thisecdails to capture the higher
temperature feature here, as the assimilation sehenuned to extend the influences of
the observations to the data sparse areas at ¢feecédhe domain. Further, the “washed
out” nature of the analysis increments (Figure Lrikar the center of the domain is due
to the large number of cooler observations surrmghthe three warmer observations,
which limit the influence of the warmer observasao properly adjust the background
field to the observed temperatures in the centeah@fdomain. Tuning the assumptions
about the background error covariance to resoleesthall scale features would help to
define the higher temperatures near the centerwould degrade the analysis in the
surrounding data-sparse areas. Hence, adjustindpablkeground error covariance as a

function of data density may help to extend théugrice of observations in otherwise



data sparse regions while maintaining the abibtyesolve smaller-scale features where
the observing network is capable of resolving them.

The application of data density dependent obsematveights or background
error covariances has been studied previouslydweeral different assimilation methods
with mixed results. Lorenc et al. (1991) implemeintiecreased weights for observations
located in data dense areas in the United Kingdoetebfological Office’s Analysis
Correction data assimilation scheme, to improveitflaence of observations in nearby
data sparse regions. Later research using the EamoCentre for Medium-Range
Weather Forecasts (ECMWF) 3DVar assimilation syssdrowed that shorter spatial
scales used to specify the background error cavegiamproved forecasts in data dense
areas, while longer spatial scales improved thectast in data sparse areas (Andersson et
al. 1998). Unfortunately, the assimilation systesadiin that research could only utilize a
single structure function at a time (which is udedspecify the spatial scales and
construct the background error covariance), andefgwmbn et al. were unable to evaluate
the impacts to the forecast on using an observatemsity dependent structure function.
However, their research notes that implementatiothie feature into the 3DVar system
would likely be beneficial.

The ~15,000 observations that were used to gent#ratéD| analysis in Figure
1.1 come from over 100 different mesonets acrossUhited States. The impact on
analyses of the quality of observations resultirggnf networks with differing reporting
practices, instrumentation, maintenance, siting, r@presentativeness is of great interest,
especially for the development of the NNoN (NatioR&search Council 2009). The

National Research Council report, motivating theassity of the NNoN, emphasizes the



need for improved and ongoing documentation of detaregarding existing mesonets
for such applications. For example, observationsnfthe Remote Automated Weather
Station (RAWS) mesonet are typically sited on setrthslopes with anemometer heights
of 6 m, instead of the 10 m height standard utlibg observations from the NWS (Horel
and Dong 2010; Tyndall et al. 2010). Observatignsfthe Citizen Weather Observing
Program (CWOP) typically come from consumer graddrumentation and may be sited
on the roof of or next to a building, unlike the ndatory field of clearance and
professional grade equipment required for NWS olasems. Observations from
different mesonet providers with differing instrumtation, standards, and siting can be
used by the analysis, provided that the assumptbost the observation errors for each
network are appropriately evaluated. Defining tha@ssumptions is facilitated by
determining the impact of each network on the aisly

As described by Tyndall et al. (2010) and Horel @whg (2010), the Local
Surface Analysis (LSA), a 2DVar analysis tool veittin MATLAB that utilizes an
assimilation scheme similar to the RTMA, has beseduon local computer nodes
maintained by the Center for High Performance CamguCHPC) at the University of
Utah. Although examination of appropriate error aances for the LSA (and
correspondingly the RTMA) as well as analysis dentsi to selected observation
networks was shown to be possible with the LSA} #ygproach is practical only for
limited regional domains (approximately 6° latitudy 6° longitude) due to the
computational requirements of the assimilation afgm. In order to be able to
efficiently compute analyses over continental schenains, the development of a new

variational surface analysis tool was initiatecpagt of this research and herein referred



to as the University of Utah Variational Surfaceafysis (UU2DVar). This development
included parallelizing the assimilation computatiomplementing highly efficient
programming practices using modest computer ressuras well as shifting the
computation of the analysis from analysis spacebservation space. The adjoint of the
UU2DVar has also been developed as part of thesareh so that it may be used in future
research to efficiently assess the impact of olagenv networks as part of efforts related
to the NNoN. The UU2DVar, as well as differenceswaen it and the RTMA, are

described in a Chapter 3.

Objectives and Outline

The objectives of this study are:

* To document the algorithms used by the UU2DVar ftficiently produce
continental-scale surface analyses.

» To show that specifications of the background ercowvariance based on
observation density allow relatively small-scalattees to be resolved in areas of
high data density while allowing the limited obsarens in data-sparse regions to
influence analyses on broader scales.

* To apply the adjoint of the UU2DVar to assess aialgensitivity to and impacts
of individual mesonets on analyses.

Chapter 2 of this document discusses and desordvedional assimilation theory, which
is used by the UU2DVar to generate surface analyasational theory is discussed in
both the analysis space framework (utilized by H8A7) and the observation space

framework (utiized by UU2DVar). Chapter 3 discussdhe computational



implementation of the variational framework used the UU2DVar, namely the
mathematical technique used to simplify the bacdkgdoerror covariance matrix, the
parallelization technique and usage of sparse cestrio decrease both wall clock time
(the time needed to compute a quantity) and memggge, formulation of the
background error correlations, as well as adjustmdon and quality control of
observations utilized by the data assimilation .tddte adjoint of the UU2DVar, its
derivation, and its application to specify backgrderror covariance as a function of
data density as well as the analysis sensitivitydiftering observation networks is
described in Chapter 4. A particular case studysisd in Chapter 5 to demonstrate the
use of this methodology. Finally, a summary andctgsions follow in Chapter 6. Future

work is also presented in that chapter.
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CHAPTER 2

VARIATIONAL ASSIMILATION THEORY

Introduction

Gridded objective analyses are generated from allpigrregularly distributed
observations combined with a background field @omatinuous grid subject to statistical
assumptions and constraints (McPherson 1975; Talddgt997; Kalnay 2003). Such data
assimilation algorithms have been necessary shcadvent of meteorological modeling
in the 1950s and many of those early approachgs (@.essman method [Gilchrist and
Cressman 1954], and successive corrections [Basghd and D66s 1955; Cressman
1959]) continue to be used. As computational resmuhave improved, techniques such
as optimal interpolation (Gandin 1963) and timeeipehdent 2DVar and 3DVar
assimilation (Sasaki 1958) have been introducedstMecently, time-dependent (four-
dimensional) variational assimilation (4DVar; SdasaR70) and ensemble-based data
assimilation (e.g., Evensen 1994) are used by sopeeational centers and by many
research groups.

While some research groups are beginning to stilya4 and ensemble based
techniques for high resolution surface assimilain Baker, personal communication;
Ancell et al. 2011), these approaches are too ctatipoally expensive to be used for

real-time, high resolution, large scale mesoscalalyses. Instead, time-independent
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variational approaches remain the most computdtionaffordable solutions for
mesoscale analyses and will be studied here. FoltpWalnay (2003), all 2DVar and

3DVar approaches seek to minimize the cost fungcfion

Zl(xa) =+ (21)

where the termg, and/, penalize the analysig, for differences from the background
field and observations respectively. As will beadissed later in this chapter, additional
weak constraints J{) based on the underlying terrain or flow dependEncan be

introduced:

zj(xa) =Jp+JotJe (2.2)

To minimize the cost function, Equation 2.1 is engbed:

Zj(xa) = (xa - xb)TPgl(xa - xb) + [H(xa) - yo]TPt:l [H(xa) - yo] (23)

where x, andy, correspond, respectively, to the background fialdl observation
vectors,Py, andP, define, respectively, the background and obseymagrror covariance
matrices, andH is an operator that maps the analysis onto thereagons. There are two
widely used approaches to minimize Equation 2.3yidd an analysis: (1) solve
iteratively for a solution on the analysis grid &&sis space, Parrish and Derber 1992;

Courtier et al. 1998), or (2) solve iteratively farsolution at the observation locations
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(observation space, Lorenc 1986; Daley and Barl#1p These two methods are

discussed in the next sections.

Analysis Space

In the analysis space framework, the relationship

H(xa) Yo = H(xa —Xp + xb) — Yo = H(xb) + H(xa _xb) — Yo (2-4)

is substituted into Equation 2.3 yielding:

Zj(xa) = (xa - xb)TPgl(xa - xb)

(2.5)
+ [H(xg — xp) + Hxp) — ¥,1"P5  [H(xg — x5) + H(xp) — ¥,]
The right side of Equation 2.5 is algebraically axged yielding Equation 2.6:
Zj(xa) = (xa - xb)TPI;I(xa - xb) + [H(xa - xb)]Tpgl [H(xa - xb)]
+ [H(xg — x)1"P,  [H(xp) — ¥,
(2.6)

+ [H(xp) — Yol TP5  [H(x, — x)]

+ [H(xp) = ¥o]"P5 " [H(xp) = ¥,

To reduce the expense of computing the inverde,dtiue to its large size), the cost

function is transformed into a function wf
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V= Pgl(xa — Xp) (2.7)

yielding:

-1 -1
2J(v) = vIPLv + VTP H P, HP,v + vVIPLH'P, [H(x}p) — ¥,]
+ [H(xp) — ¥,] TP "HP,v (2.8)

+ [H(xp) = ¥o]"P5 " [H(xp) = ¥,

The minimum of the cost function from Equation &&omputed by finding where the

gradient of the function is O:
0=V/(v) = Piv + PJH'P, HPyv + PJHTP, [H(xp) — ¥l (2.8)
yielding:
—PIHTP, [H(xp) — o] = [PL + PIHTP, HPy| v (2.9)

Equation 2.9 is solved iteratively forby the conjugate gradient solution method (CGS;
Hestenes and Stiefel 1952) or the generalized mnimmesidual method (GMRES; Saad
and Schultz 1986). The analysis is computed fromaign 2.10, which reflects that the

background field is modified by the innovatid?,¢):
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Xq = Xp + Ppv (2.10)

Although equations 2.9 and 2.10 simplify the analyy eliminating the computation of
the inverse oPy, the computation and storageRyf itself is no trivial taskP}, is a matrix

of size[n x n], wheren is the number of gridpoints in the analysis. Facoatinental
scale two-dimensional analysiscan be on the order from @ 1¢ depending upon the
horizontal spacing of the grid. Storage of a doyiskxision matrix of these sizes ranges
from 74 GB to 7.4 TB, which can be difficult to stoin memory even on
supercomputers. Furthermore, computation of thé lalckground error covariance
matrix is expensive; e.g., computiRg generally takes about 5.5 h on 8 processor cores
(unless otherwise specified, all wall clock timesr&v measured using a compute node
with 2 Xeon hex-core processors clocked at 2.80 )&biz the types of cases studied
here, which is not suitable for an analysis thaghthbe needed for real-time applications.
Although wall clock time can be reduced by usingenprocessors, operational centers
often have serious constraints on computing regsuue to the large number of
numerical products needed to run on the same superder (for example, the 5-km
RTMA is only run on 16 processors of NCEP’s 4,99@cpssor computer cluster [M. de
Pondeca, personal communication]).

The background error covariance matrix is ofteprapimated to circumvent
these storage and computation problems (Fisher)2008re are many different ways to
approximateP,, such as modeling the matrix in both spectral spdtial coordinates
using the wavelet formation (Buehner and Charro@720using a diffusion operator

(Weaver and Courtier 2001), or using a recursikerf(Lorenc 1986; Purser et al. 2003a,
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2003b; de Pondeca et al. 2011). Since the backdreunr covariance matrix defines the
spatial scales over which observations influence #malysis, it is important to

approximate the matrix as accurately as possib&e§p1991; Fisher 2003). Since much
of the covariance modeling research (Weaver andt@o2001; Purser et al. 2003a,
2003b; Buehner and Charron 2007) has focused ofalgl@nalysis products,

simplifications of the covariance matrices overlslarge domains take advantage of
synoptic-scale balances, such as geostrophic amieb$tatic balance. Unfortunately, for
mesoscale conditions within the planetary bound@yer, such balances are not

appropriate (Bannister 2008a, 2008b).

Observation Space

In the observation space framework, the gradiétitecost function, presented in

Equation 2.3, is computed immediately:

0 = 2VJ(xa) = Py (x4 — xp) + H'P3 [H(xo) — ¥,] (2.11)

Equation 2.11 is multiplied by the background ercovariance to avoid computing its

inverse yielding:

xg — xp = PoH P [y, — H(x,)] (2.12)

Similar to the derivation in physical space, thbsiiiution
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n =P, [y, — H(x,)] (2.13)

is introduced into Equation 2.12 to yield Equatibh4:

X, —xp =PyH'p (2.14)

Equation 2.14 is transformed into observation sgmcenultiplying the equation by the

forward transform operatoH:

H(x,) — H(xp) = HPyH'n (2.15)

Additional simple manipulation leads to:

H(x,) — Yo + Yo — H(xp) = HP,H™g (2.16)

—Po11 + ¥, — H(xp) = HPyH'n (2.17)

Finally, the terms multiplied by in Equation 2.17 are separated to one side of the

equation, which allows fay to be solved iteratively:

Yo — H(xp) = (HPyH + Py )7 (2.18)

The analysis is then computed by rearranging Equ&il4:
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Xq = Xp+ PbHTn (2.19)

The observation space approach eliminates thegagnablem of the background
error covariance since the transpose Hoffilters unneeded information from the

background error covariance. RowsRgfcan be computed individually, multiplied by

their respective columns of , and stored. The produd::thT has dimensiong x m],
wherem is the number of observations assimilated by thalysis (see Figure 2.1).
Memory efficiency is greatly improved by using thisproach, provided that the analysis
is under-sampled (i.e., the number of observatisnewuch less than the number of
gridpoints [Daley and Barker 2001]). Memory reqments for the computation in
observation space for double precision data cagerdrom 7.4 GB to 74.5 GB for
analyses of 10to 10 gridpoints, which is within the memory capacityroéiny computer
clusters. While these memory requirements are ssignificant, additional
approximations can be made and additional compumatimethods can be implemented
to allow analyses to be generated using modest gtingpresources. These methods and

approximations used by the UU2DVar are coveredhapfer 3.

Implementation of Constraints

Although the undersampling of observations is ex@ib by the analysis
technique presented by Equations 2.18 and 2.1%rsachpling remains a significant
problem for high resolution analyses. If the obatons are sparse in a particular area of
the analysis domain, then the data assimilatiotesyslepends upon the background field

to produce the analysis (Equation 2.1). Many h&golution surface analysis frameworks
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and systems (Myrick et al. 2005; de Pondeca €t(dl1; Haiden et al. 2011) downscale
coarse resolution background fields to the analgsid using a variety of methods.
Unfortunately, the downscaled background field mmat resolve many small-scale
weather features (Myrick et al. 2005), and in s@@as&es, may produce erroneous features
in these areas through the downscaling process.

The usage of constraints can help improve the aisaby supplying information
to the data assimilation system not provided by lihekground field or observations
(Lorenc 1986; Xie et al. 2002). The constraint @ther be formulated as a weak
constraint or a strong constraint (Zhu and Yan 2088ong constraints modify either the
background error covariance or the backgroundfit3dle strong constraint may add
balanced coupling between two different assimilafeddds, add background error
correlation to a meteorological parameter or topphy field, or may impose some other
fundamental limit or law to the analysis (Loren@&9Protat and Zawadzki 1999; Xie et
al. 2002). As will be discussed in Chapter 3, thé2DVar (as well as the RTMA) uses
differences in elevation as an anisotropic constrai

The addition of a strong constraint defined by tensity of observations is
introduced in Chapter 3 and tested in Chapter gaasof this research. Because of the
direct modification to the background error covaca or background field, the strong
constraints are assumed to be perfect and forcesubsequent analyses to meet the
balance requirements of the specific constraint¢ho 1986; Xie et al. 2002).

In contrast, a weak constraint does not force tiayais to meet the constraint

exactly, which can be advantageous if the congtraianly an approximation (Xie et al.
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2002). One formulation of the weak constrajpt, presented in Equation 2.2 is often

expanded in the form:

Jo = (Xa — )P (X0 — %) (2.20)

wherex, is the constrained field am} is a term that describes the error covariance of
the constrained field (Lorenc 1986). The teRp describes the weighting of the
minimization of the difference between the analymisl the constraint relative to the
difference between the analysis and the obsenstod the analysis and the background
field. The weak constraint may also be implememteddditional artificial observations
in y, in the cost function.

The solution to the variational analysis equatisith a weak constraint as
described by Equation 2.2 becomes more complicdiaa the basic observation space
equations presented by Equations 2.18 and 2.1@landdoubles the memory cost of the
analysis. Equation 2.21 presents the variationat ¢onction with the explicit weak

constraint implementation presented by Equatiof:2.2

zj(xa) = (xa - xb)TPgl(xa - xb) + [H(xa) - yo]Tpgl [H(xa) - yo]
(2.21)

+ (xa - xc)TP(?l(xa - xc)

The gradient of Equation 2.21 is computed to fimel tninimum of the cost function:
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0 = 2V)(xa) = Py (xa — xp) + H'P, [H(x2) — Yol + Pi (e — 1) (2:22)

As with the observation space framework presemettie last section, Equation 2.22 is
multiplied by the background error covariance tog@ify the computation of the

analysis:

-1 _
0=1x,—xp+PpH'P, [H(xo) — ¥, + PP, (x4 — x) (2.23)

Equation 2.23 is multiplied by the observation @parH to simplify the terms involving

Pb:
-1 _
0 = H(xq — xp) + HPH'P_ [H(xo) — ¥, + HP,P, ! (x4 — x.) (2.24)
Expansion and rearrangement yields:

-1 _
H(xp) + HPRH'P_ y, + HP,P ',
(2.25)
-1
= H(x,) + HPyH'P, H(x,) + HPLP 'x,

Finally, the analysis vector is factored out of tight hand side of the equation, yielding:
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-1
H(xp) + HP,H'P_ "y, + HPLP  'x,
(2.26)
T ! -1
= [H+HPyHP, H + HPyP | %,

In this form, the analysis is computed by direabving for the analysis vector through
an iterative solution method (as in Equations 208 2.18). Equation 2.26 can be

generalized foK multiple constraints:

K
-1
H(xy) + HPHTP 'y, + HPbZ Polx,,
k=1
(2.27)

K
-1
H+ HP,HP'H + HPbZ P;kllxa
k=1

The preceding derivation assumes thigt is a diagonal matrix, as it is not

computationally feasible to calculate the inversea¢n x n] matrix. As in the basic

observation space framework, the combined meRg'le can be stored efficiently.
However, the computational memory required douhlssg Equation 2.27 because
another product must be storét?,. This product also does not require storing expfic
the entire background error covariance matrix dsvidual rows of theHd matrix can be
multiplied by individual columns of the, matrix to yield the produdiP,. Although
the memory cost for an analysis using Equation 8dibles compared to Equations 2.18

and 2.19, wall clock time increases only slighBecausd?, is symmetric, individual

rows of PP, computed during the computation I%,IHT can be transposed to yield the
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individual columns ofP, needed for the computation B, (computation of these
matrix products is further discussed in Chapter 3).

The UU2DVar supports both the usage of strong aedkwconstraints in the
computation of the analysis; however, weak constsaare not investigated as part of this
research. The UU2DVar could be utilized to studyakveonstraints as described by
Equation 2.21 such as the additional utilizatioraddtatistical model of orographic flow
appropriate to the underlying terrain, as the peb#iP, is computed as part of the
assimilation cycle to compute the adjoint (desatibe Chapter 4). The implementation
of the strong constraints used as part of thisarebe which includes basic terrain

anisotropy and a data density term, are discuss€thapter 3.
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PbHT61=0a+Nb+Lc+Id+Ee+abf PbHT62=09+Nh+Li+1j+Ek+o'bl

Figure 2.1. Methodology to compute each row of Haekground error covariance

individually (shaded) to yieIG’bHT. VariablesA throughO anda throughl are dummy
variables.



CHAPTER 3

IMPLEMENTATION OF VARIATIONAL ASSIMILATION

THEORY WITHIN THE UU2DVAR

Introduction
As mentioned previously, the UU2DVar solves theiateonal cost function in
observation space. Chapter 2 presented a derivafitime observation space solution to
the cost function, and the UU2DVar’'s implementatioh those equations (e.g., the
specification of the error covariances, quality tcoh of observations, analysis

computation cycle) is covered here.

Background Error Covariance

Individual elements of the background error covareaused by the UU2DVar are

computed by:

P, = 1y 2 (3.1)
b = % P "R ) P\ Tz |

wherer andz are the horizontal and vertical great circle dises between gridpoints

and j. The horizontal and vertical decorrelation lengtbale terms R, and Z;,
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respectively) in the denominators of the exponérteams in Equation 3.1 are not
constants as used in prior studies (Myrick et 80% Tyndall 2008; Horel and Dong
2010; Tyndall et al. 2010), but are instead arerassl to be functions of the data density
at gridpointi as measured by the dimensionless IDIR, andZ; are defined for th&™

sixth order polynomials of the form:

Ri(I) = R (Pralf + P2l? + Dl + Diald + Disl? + rsli +pie7)  (3.2)

2y (1) = Z - (Dalf + pr2l? + Disli + Prald + Drsl? + Prsli +Pe7)  (3.3)

wherepy, ; throughp, , are coefficients of the™ polynomial that determine its shape,
andR andZ, respectively, are horizontal and vertical dedatien length scales of the
type used in the previously cited studies. The mpohyial functions presented in
Equations 3.2 and 3.3 were selected due to the& mamodifying their shapes by simply
changing the polynomial coefficients. Figure 3.pidts the various forms &8, andz,
as a function of the IDI that were studied as péarthis research. In this study,andZ
are set to 80 km and 200 m, respectively; thesaegalvere determined by Tyndall et al.
(2010) for the CONUS domain and were tested ins& study over the area surrounding
the Shenandoah Valley, VA. Similarly, the backgmwrror varianceg,, is set to 1°C
for 2-m temperature and 2-m dewpoint, and 1 m/s:fandv winds.

The IDI, as defined by Uboldi et al. (2008), isqmuted by generating an analysis
where all of the background values are assumedetaeno and all observations are
assumed to be one. The IDI is completely dependgoin the assumptions made

regarding the observation and background error r@awees. In this study, the
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background error covariance used by the IDI is gdaspecified by Equation 3.1 using
the set of polynomial coefficients correspondingcte 0 (see Figure 3.1). The ratio of
the observation error variance to background eradiance ¢2 /o) is also always 1 for
all IDI computations.

The IDI is a measure of the influence on the aialyy the observations;
however, it also a measure of observation denkitydl and Dong 2010). Regions of the
analysis where the IDI is near 1 indicate data aokas with multiple stations in close
proximity, while values near 0 indicate data vagjions. Withs? /a7 set to 1, the value
of the IDI for an analysis with a single observatioear that particular observation’s
gridpoint is 0.5 (i.e., the observation and backg contribute equally to the final
analysis). As a test of the use of the IDI, 0.63s8d as a point of inflection for tke= 1
and k = 2 polynomials. These polynomials force the decati@h length scales to
decrease significantly as the IDI approaches 1thectby allow finer-scale structures in
the analysis than when= 0. In the case of thke = 2 polynomial, the decorrelation
length scales are substantially increased as thegproaches 0 for completely data void
areas and thereby allow deviations between isolalsgérvations and the background to
influence a broader region. Specifying the backgdoarror covariance as a function of

data density will be examined in Chapter 5.

Computation and Storage of the Background

Error Covariance Matrix

As mentioned in Chapter 2, the computation andagmiof the background error

covariance matrix is one of the most significantaldnges in variational data
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assimilation. Even with the usage of the obsermatspace framework, additional
approximations must be made and advanced computatgnshods must be implemented
to compute and store the background error covagiaver a continental scale domain
within real-time analysis constraints. The UU2D\itizes the following four methods
to improve the computation and storage of the bamkyl error covariance matrix (in the
form of PbHT):

1. Usage of sparse matrix mathematics

2. Variational localization

3. Computation of only needed element$gf

4. Parallel computing

Although the largest matrix stored by the UU2DV&wof size[n X m] instead of
[n x n], a significant amount of memory is required torstthis matrix for continental
scale variational data assimilation problems. e CONUS 5-km resolution domain

used in this research and the 15,000 observatisgsimiated each hour, storage of the
full PbHT matrix requires approximately 75 GB of memory. Altigh this is feasible for

large supercomputers, it is not necessary to sheréull PbHT matrix, as sparse matrices
can be utilized to reduce memory requirements disasavall clock time. Unlike the full
matrix, which explicitly stores every element ofratrix, the sparse matrix only stores
nonzero elements of the matrix, along with the inldeations of those nonzero elements.
Using sparse matrices only saves significant menibityie matrix to be stored has

enough nonzero elements. For examB[gb-,lT is a two-dimensional matrix; therefore the

sparse form onHT must store both row and column indices as wethasvalues of the
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nonzero elements within the matrix. For memory isgwito be realizech,’bHT must be at

least 66.7% element sparse (i.e., at least 66.7% efements must be 0).

Unfortunately,PbHT does not meet this requirement, even thdﬂ{;ﬁs generally
an extremely sparse matrix (as discussed below, @m value is nonzero in each row
for this study). To force element sparseness, tranial localization can be used to add
additional zero elements to the matrix product. é&wejing on how the background error
covariance is specified, an observation assimilatsthg variational methods can
influence analysis gridpoint values thousands twfrketers away. These extremely large
scale correlations may not be accurate (HamillleR@01), especially in the case of
undersampled assimilation problems, which is typieath surface observations.
Variational localization refers to the eliminatiohextremely small error correlations. In
the UU2DVar, small error correlations are not ezemputed as part of the specification
of the covariance matrix, which not only reducesmuogy requirements (from sparse
matrix implementations), but also improves compatetl time. The UU2DVar
implements variational localization through a maamradius of influence, which in this
study is set to 3.75 times the maximum horizontdadrelation scale, i.e., 300 km for

polynomial coefficientsc = 0 andk = 1, and 600 km fok = 2. This corresponds to

removing all correlations that are smaller thanxI®’ . This maximum radius of
influence was chosen somewhat arbitrarily, and eeduit further will decrease both
wall clock time and memory requirements and mayehlttle impact on the resulting
analyses.

Figure 3.2 depicts the difference between an IDiperature analysis computed

without variational localization and one with vdidmal localization, using a western
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United States domain centered over Utah. As showhigure 3.2, differences between
the two analyses are negligible, with a maximuniedénce on the order of £0The

majority of the largest differences are locateddata sparse and data void regions;
however, these differences are extremely smallthBamore, the usage of variational
localization is supported by other analysis systdrasalso utilize the technique, e.g., the
RTMA (M. de Pondeca, personal communication). Usalgeariational localization is

supported by the functional form of Equation 3.lhickh assumes background error

correlations asymptote to O at large distances.
In addition to reducing the memory requirementsstmePbHT, there is also a

need to significantly reduce its computation tin@mputation oﬂ:’bHT on a single
processor for a continental scale problem can daks; however, the wall clock time can

be significantly reduced by only computing requirddments of the background error

covariance matri®, that correspond to the nonzero rowsHof As illustrated in Figure

3.3, only the first and fifth columns &%, actually need to be computed to yield the full

PbHT matrix for the simple example depicted in Figurg. 2Vall clock time using the
true covariance and forward operator is signifigareduced from days to less than 30
minutes, as the number of surface observationypdlly 2-3 orders of magnitude
smaller than the number of analysis gridpoints.

The wall clock time needed to compute the backgiloamor covariance matrix
can further be reduced through parallel computifite computation oy, is typically
classified as an embarrassingly parallel compugrablem, as the only interprocessor
communication is at the start of the routine, tstribute pieces of information used to

computePy, to individual workers, and at the end of the noetito gather up the final
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result from the individual workers to assemble H foatrix. Embarrassingly parallel
computing problems typically have near perfect dppei.e., wall clock time is reduced
by half when the number of available processordbisu Because the UU2DVar utilizes
sparse matrices in its computation of the backgioerror covariance matrix, the
problem is more complicated than the simple pdrédieloop, as large amounts of full
matrices must be computed and then converted tsepaatrices, instead of making all

of these computations using sparse matrices (duesdbiocation of memory). For

completeness, the algorithm used to commidT (andHPy) is depicted in Figure 3.4

and described below (variable names used by the axditalicized):

1. Nonzeros rowsi' are identified to determine which columnsRyf must be
computed.

2. Resulting indices from (1) are divided into equaktp by the number of
processorsnprocs) used by the analysis.

3. Each individual section of indices (owned by a igatar processor) is divided
into further subsections, based on the value of uber tunable variable
numpbrowscompatonce. This particular variable controls how many colemn
of P, the computer as a whole (not individual processoa)lowed to operate
on at once. Therefore, the length of each subseeach individual processor
may operate on at one timengmpbrowscompatonce/nprocs.

4. Each processor computes each subsection of ignaskindices oP}, column
by column, through Equation 3.1, using a full matio store the resulting

computations. When a processor reaches the erte &fubsection, the entire
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Py, subsection is converted from a full matrix to arspamatrix, and the
processor moves on to the next subsection.

5. When all subsections have been completed, eackidnd section of,
owned by each processor is gathered into a sipgless matrix. Note that this
matrix is not the full covariance matrix, as onlgreents that would not be
reduced to O by multiplication of the transposethe forward operator are
computed.

6. The matrix producﬂ:’bHT is computed. The matrix storing the needed
elements oPy, is transposed, which is required for the compaitatif HP,,.

Figure 3.5 shows the speedup (black thin line)hefalgorithm used to compute

P,,HT andHPy as a function of the number of processors. Thedieés a ratio of the

computer time required for a code to run on a sipgbcessor versus the time required to
run on multiple processors. Parallel algorithmshwaerfect speedup (depicted in Figure
3.5 as a thick grey line) have wall clock timestthee halved when the number of
processors used to compute the algorithm is douBlediect speedup can be difficult to

achieve due to communication overhead between ggsocg& The speedup depicted in

Figure 3.5 measures the average of 10 trials cdng)Bt,HT andHPy, for all CONUS

temperature observations for the 1400 UTC 27 Oct@040 analysis (approximately

14,000 observations over 740,000 gridpoints). Speeaf the UU2DVar’sF’bHT and
HP,, computation is significantly less than ideal faiger numbers of processors because
all processors used as part of this test sharsaime memory. This forces each processor
to operate on a smaller piece of the backgroundr eovariance matrix at one time.

Speedup can be improved by scaling tiwenpbrowscompatonce with the number of
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processors, but this requires increasing the merabitye system with the number of
processors as well. Although the computer systesd us this research has significantly
more memory than other compute nodes, it was dedidat the UU2DVar would be

tested usinghumpbrowscompatonce corresponding to a moderately powered compute

node. Although the speedup of the UU2DVar's comipanaof PbHT andHPy is not
perfect, the parallel implementation of this coti# scales reasonably well and allows

the entire tool to be run within real-time congitai Computation of a single set of

PbHT and HP, arrays takes approximately 4 minutes on 8 processwes for

approximately ~15000 observations.

Background, Terrain, and Land/Water Mask

The UU2DVar is designed to use the background dieltbpography, and
land/water mask of the RTMA. This background fielshsists of the 12-km resolution
Rapid Update Cycle (RUC; Benjamin et al. 2004) fbriecast downscaled to either 2.5-
km or 5-km resolution, depending on the resolutddrthe analysis. The downscaling
process of the RUC background field attempts toifjdde meteorological fields based
on differences between the 12-km and the 2.5-kr-km terrain; this process is fully
described by Benjamin et al. (2007) and Jasco@®{R The terrain field used in this
research for computing the background error comagais modified from its original
format; the elevation of gridpoints that are clsdias water points as specified by the
land/water mask is lowered 500 m for the 2-m tempge and 2-m dewpoint

background error covariance computation. This teghlenis similar to that used by the
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RTMA. The terrain field and land/water mask of #r@ire domain used in this study is
shown in Figure 3.6.

Input of the background fields is accomplished tigto a Network Common Data
Form (NetCDF; Rew and Davis 1990) interface witATLAB. The background fields
can also be retrieved from the University of Utamver running Thematic Realtime
Environmental Distributed Data Services (THREDDSaréh et al. 2006) Server.
Although CONUS domain background fields have beseduin this research, the
UU2DVar has also been configured to use backgrdiefds over an Austrian domain for

comparison to the INCA system (Haiden et al. 2011).

Usage of Observations and Quality Control

Observations of 2-m temperature and 1Qtnand v winds are used by the
UU2Dvar without any additional pre-processing amd assimilated in terms of their
metric units (°C for temperature, m/s for windsle$dure observations are assimilated in
mb; however, the UU2DVar can either assimilate the observation or apply an
elevation correction term, as is sometimes necgsshen there are large differences
between the observation elevation and the anatysifpoint elevation. This pressure
correction modifies an individual raw surface pressobservation to a corrected surface

pressurey?©) by using the hypsometric equation:

y° = exp () 0 - xf) (3.4)

g
R-y§
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where R is the ideal gas constant for dry agr,is the constant of gravitational
accelerationy} andyZ correspond to the 2-m temperature and elevatighefressure
observation respectively, ang is the elevation of the nearest analysis gridptonthe
observation.

Since moisture is analyzed in terms of dewpointperature, mixing ratio values
provided by some sources are converted to reldiuraidity to be consistent with the
majority of mesonet observations available in teafeelative humidity. Because surface
pressure is not available for all reports and tovigle a consistent conversion from
relative humidity to dewpoint temperature, relatiaumidity observationsyf") are

converted to dewpoint temperature observatigf®)(using an empirical formula:

1
yit = yIh8(112°C + 0.9y8) + 0.1yf — 112°C (8:5)

The UU2DVar can be configured to use one of thddéerent observation
sources: (1) the MesoWest database (Horel et BR)2(2) the observation data file used
by the RTMA, or (3) a flat file generated by theeusObservations acquired using the
Uu2DVar’'s MesoWest interface must fall within a #80n time window centered about
the analysis hour. The UU2DVar uses the time windased by the RTMA for
observations acquired from the RTMA'’s observatidat files. The UU2DVar does not
use a time window for the usage of an observati@nfife; therefore, the time window
used by the analysis is configurable by the usehis instance. For all three of these
configuration options, only one observation is ugedstation. In the case of stations that

record several observations within the time windomy the observation closest to the
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analysis hour is used. If two observations fronta#ien are separated by an equal amount
of time about the analysis hour, the later obseyuas used.

All observations also undergo quality control dgrthe assimilation cycle within
the UU2DVar. Temperature, dewpoint, and pressureemations undergo a simple

quality control check which rejects any observatitmat fail to meet the criteria

Iyo - xbl < ngtdev(xb) (36)

whereeg,, refers to a tunable error multiplier factor ane tlunctionstdev(xy) is the
standard deviation of the background field over #mire domain (note that as in
Equation 3.4y, is the value of a single background value neareshe observation).
Although this quality control may be rudimentaryisi effective in removing gross errors
from the observation dataset. The error multiplgris set to 3 for temperature,
dewpoint, and wind speed in this research.

An additional quality control step for wind obsations is also available for
UuU2DVar. Wind observations still must meet the liegments as specified by Equation
3.6 (u andv wind components and wind speed must satisfy therier of Equation 3.6,
or the entire observation is rejected), but adddlolight wind observations can be

rejected if

v <tySUxy® >tp° (3.7)
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wherey,’s is the observation wind speed,’ is the value of the nearest background
gridpoint to the observation, and/* and t)° are wind speed observation and
background quality thresholds, respectively. Thidiional quality control check helps
to identify erroneously calm winds where the baokgd field is specifying stronger
winds. Although the asymmetric wind quality controbs not used in the research
presented here, it is mentioned here to preseomplete description of the UU2DVar.

A minimum and maximum threshold quality controlncalso be applied to
pressure observations within the UU2DVar. When tuality control is used, pressure

observations that are used by the analysis must timeeriteria

Tonin < Yo < Tiax (38)

min

where !’ andth,,, are minimum and maximum surface pressure thresh¢d

specified by the user), respectively, afd is an observation’s surface pressure. This
quality control was added after evaluation of salv@ressure analyses, as the quality
control specified by Equation 3.6 fails to removeny unphysical surface pressure
observations. Surface pressure analyses are ndiedtwithin this research, but this
particular quality control is mentioned here aslwelpresent a complete description of
the UU2DVar.

A simple forward operator is used to interpretlgsia values to observation
locations, as well as a simple observation erreagance to assimilate the observations.
The forward operatoHl, interprets analysis values using a nearest nergitproach. As

mentioned earlier in this chapter, the simplicifytlus forward operator allows it to be
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exploited as a filter to reduce the storage requfce the background error covariance
matrix. The observation error covariance matdy, is simply a diagonal matrix, and in
this research, the observation error variancetisos&°C for temperature and dewpoint
and to 1 m/s fou andv wind components and wind speed. Setting all offgdnal
elements oP, to 0 assumes that all observation errors are velebed with each other;
however, this may not be true for all observatiogstors of observations within
individual mesonets may actually be correlated watlch other through siting or
instrumentation biases of a particular mesonetwisbe discussed in Chapter 6, it is
possible to use the methodology presented in Chédptehelp determine mesonet biases
on the basis of large samples of analyses. Usimgdime value for all diagonal elements
of observation error covariance matrix also implieat all observations have equal
observation errors, which may also not be accuratgarticular mesonet may have
significantly higher observations errors than oshdhe same may also apply for an
individual observation when compared to other olet@yns within the mesonet. While it
is straightforward to implement varying observatemors dependent upon the mesonet
or the individual observation in UU2DVar, the tugiof P, requires extensive research

and additional testing that was beyond the scopki®ttudy.

UU2DVar General Characteristics

and Analysis Cycle

As a result of the simple specification of the lgokind error covariance by
Equation 3.1, the UU2DVar produces univariate siafanalyses. Because wind is a

vector measurement, it was believed assimilatirsgndv wind components separately
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would yield analyses that would be less accuratn thnalyses generated using a
multivariate method. This approach involves gemegat andv unit wind component
analysis fields, along with analyses of wind sp&dte vector wind field is produced by
multiplying the unitu andv wind components analyses by the wind speed asalysi
the case of the wind speed analysis, the rare inegatlues within the analysis are set to
0 after the analysis has been computed.

The approximations and parallelization techniqu&ed in this chapter allow the
UU2DVar to generate 2-m temperature, 2-m dewpagimtiace pressure, and 10urand
v wind component analyses in approximately 25 mswuthen run on a compute node of
8 processors. This is comparable to the computatyate of the RTMA, which needs
approximately 15 minutes when run on 16 processorsthe NCEP development
supercomputer (M. de Pondeca, personal communimjati@omputing the observation
sensitivity and observation impact (which is defina the next chapter) for all fields
adds an additional 8 minutes to the UU2DVar's comapon cycle. The complete
computation cycle, along with the parallelizatiocheme across the entire cycle, is
depicted in Figure 3.7.

While many data assimilation tools and systemsh siscthe RTMA, are written
in FORTRAN, the UU2DVar is written in MATLAB. The KMTLAB programming
language offers several advantages over FORTRANpdera commonly supported at
research universities. MATLAB has built-in suppfot sparse matrix mathematics and
optimizations through the Linear Algebra PackageRACK; Anderson et al. 1999) and
the Basic Linear Algebra Subprograms (BLAS; Dongaat al. 1988). Relative to the

commonly used Message Passing Interface (MPI), M@’k parallel computing
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implementation is also easier to use since MATLA&esl not require a developer to
explicitly code communication and work distributibatween processors. The MATLAB
programing language also offers intrinsic subragiessential for solving the variational
assimilation equation, including an efficient GMRE®iction used to solve Equation
2.18. The cross-platform compiling abilities of MBAB allowed the UU2DVar to be
developed and tested on two different operatingesys (Windows and Linux) with very
little additional development work. The ability tompile the MATLAB code using the
freely available MATLAB Compiler Runtime also mak#se UU2DVar available on
systems without MATLAB licenses. MATLAB also offersuilt-in support of the
standard NetCDF file format, which allows efficianput/output of the background and
analysis. Although there were initially some res#éions regarding computational
overhead requirements of MATLAB, this research d@monstrated those reservations to
be unfounded as the UU2DVar’s wall clock time isnparable to the FORTRAN-based
RTMA.

Figure 3.8 contrasts the analysis increments (arsafyinus background) for 2-m
air temperature at 1400 UTC 27 October 2010 forUhk2DVar (Figure 3.8a) and the
RTMA (Figure 3.8b). For this example, the decotiiela length scales used by the
UuU2DVar have been set to match the RTMA’s equivialdecorrelation length scales
along with using the same observation dataset @asRiAMA. Figure 3.8c shows the
difference field between the RTMA and the UU2DVaalysis increments. Many of the
differences between the two analyses are in regybrsography, i.e., along the Sierra-
Nevada, Rocky, and Appalachian mountain ranges.léMiifferences in the quality

control procedures may cause some differencesdniitrements, the majority of the
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differences are due to the coarse computationug@dl by the recursive filters within the
RTMA as opposed to the approach used by the UU2DMas coarse computation grid
requires specifying a smoothed terrain for the pemknd error covariance (M. de
Pondeca, personal communication), which causes mafthye minor terrain features to

have limited impact on the computation of analystsements within the RTMA.
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Figure 3.3. Pictorial demonstration of exploitatioh the forward operator using the
example presented in Figure 2.1. Only a fractiothef columns oP}, (shaded) actually
need to be calculated to compE’tgHT; these columns correspond to nonzero rows of
H'.
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Distribution of the work to the processors is basedn equal division of the number of
columns that must be computed (light red and lighe), and not on a division of the
entire covariance matrix itself. Dark red and dallke columns of the background error
covariance are not computed. Each processor waork®mputing two columns at a time
(outlined in green) using full matrices before certing to a sparse matrix type.
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CHAPTER 4

OBSERVATION IMPACTS AND SENSITIVITY

Introduction
The National Research Council (2009) discussecdhdleel for assessing the extent
to which observations collected from disparate sesican be used to meet a variety of
needs. Building on prior work (Myrick and Horel Z)MHorel and Dong 2010; Tyndall et
al. 2010), this study is aimed at providing a befiBundation for addressing the
sensitivity and impacts of observations as a famctif observation source. The objective
of this chapter is to describe an appropriate apgraand the data sources that will be

evaluated in the next chapter.

Computation

Withholding a subset of observations from analysesl comparing the
differences between the withheld observations &edrésulting analyses is commonly
used to assess analysis accuracy and uncertaimglbas the impacts of different types
of observations on the analysis (Seaman and Hwchiil985; Zapotocny et al. 2000;
Hiemstra et al. 2006; Myrick and Horel 2008; Tynd2008; Horel and Dong 2010;
Tyndall et al. 2010). The choice of which obsemasi to withhold depends on the

application. For example, Zapotocny et al. (200€@eentiated by instrumentation type,
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Hiemstra et al. (2006) used observations from netsvgenerally not used operationally
in their data assimilation system, while Myrick afdrel (2008) randomly withheld 30%
of all surface observations. Horel and Dong (20dif)lied the most extensive approach
by sequentially withholding each of ~3000 obseorai from each of ~9000 analyses
resulting in over 500,000 cross-validation experitee This leave-one-out cross
validation approach (Wilks 2006) is far too compiataally expensive to be used for
real-time applications.

This research utilizes the analysis adjoint to cedfitly compute analysis
sensitivity to observations without the need tofgen cross validation experiments.
Adjoints of forecast models are now used routinédy assess where “targeted”
observations might reduce model forecast errorbn@raet al. 1998; Buizza and Montani
1999; Langland et al. 1999). Following the derivatiby Baker and Daley (2000),
Equations 2.18 and 2.19, which are used to comimeteanalyses within the UU2DVar,

can be combined into a single equation (4.1):

-1
Xq =Xy + PoH (HPyHT + Po) [y, — H(xp)] (4.1)

The adjoint of an analysis system can be viewethasadjustment to the background
field by the observations necessary to yield theilteng analysis, i.e., solving for the
right-most term in Equation 4.1 (Kalnay 2003). T$mnsitivity of the analysis to the
observations is calculated from the derivative afu&ion 4.1 with respect to the

observation vector and through use of the chast rul
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0x,
Yo

_14T
= [PoHT(HPHT +P) | =K (4.2)

KT is the transpose of the weight matkixwhich can be simplified using the distributive
property of the transpose operator and the symnuéttiye background and observation

error covariance matrices to yield:
K" = (HP,H' + P, )HPy, (4.3)

A cost functiong (different from the cost functiohin Equation 2.1 used as the
foundation for variational analysis) is specifiét is a measure of a quantity of interest
within the analysis domain. Forecast model adj@@nsitivity studies may choose a
parameter such as air temperature or sea levedyeesver a limited domain of interest
in order to highlight what additional targeted atvs¢ions might help reduce the forecast
error of that parameter in that region (Langlan@lett999; Baker and Daley 2000; Zhu
and Gelaro 2008). Since the objective of this nedess to assess analysis sensitivity to
differences between observation netwogkss defined with respect to the entire analysis

domain as the squared differences between thesamalyd the background field:

9 =50 )° @4)

The observation sensitivity vectaiJ/dy,, is computed using Equation 4.2 and the

chain rule:
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=K (x4 — xp) (4.5)

The observation sensitivity is defined at each ola®n location and does not depend
on the specific values of observations at thosations (Baker and Daley 2000), i.e., it is
a measure of the sensitivity of the analysis tarebservations at that location, not the
sensitivity to the specific observation reportethat location.

The observation impadf, as defined by Zhu and Gelaro (2008), considegs th

value of observations as well as their locations:

1 9J
g_§<6y0

Yo — H(xp)) (4.6)

Since G is the scalar product of the observation sengitivand the observation

innovations, the contribution of specific obsergat to the analysis can be assessed.

Observation Networks

As a test of the methodology described in the iptesssubsection, observations
are examined for 1400 UTC 27 October 2010. Theyaigls restricted to observations
accessible via MesoWest that are publicly availatdethe Meteorological Assimilation
and Data Ingest System (MADIS; Miller et al. 200%yith permission of the data
providers, observations available to MADIS that subject to usage restrictions from the
Oklahoma Mesonet and WeatherFlow Inc. were addedhie analysis as they reflect

networks with very good maintenance, equipment,saiialy standards. A total of 13,763
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temperature, 11,201 humidity, and 11,728 wind ols@ns were available for this
analysis

As discussed by the National Research Council (R00®tadata on the
equipment, siting, and reporting standards usechégy data providers are incomplete.
The MesoWest developers identify mesonets by swirce, which in the cases of large
networks is often in turn an aggregate of manyed#fit sources. For the purposes of this
study, the source networks are grouped into 10rgéoategories based subjectively on
the characteristics of the networks known to thesd¥gest developers. Figure 4.1 depicts
the locations of each observation available atgpecific time and grouped by mesonet
and network category. Providing such informationutimely is one of the
recommendations of the National Research Coun@dg® Horel et al. (2002) provide a
description of observing networks provided by Mess¥Vbut because those descriptions
may no longer be up to date and because many némonks have been added to
MesoWest since the publication of that article, tltetworks are described here for
completeness.

Figure 4.1a shows station locations that are ifiedsas primarily agricultural
(AG). The AG networks monitor standard meteorolabiparameters and often report
soil temperature and moisture as well. Wind sensoestypically mounted at 3 m to
facilitate surface evaporation estimates. The ntgjaf this network is made up of
observations from the Soil Climate Analysis Netw@8chaefer and Paetzold 2001), the
California Irrigation Management Information Systgi@nyder 1984), and the U.S.

Bureau of Reclamation AgriMet (U.S. Bureau of Rewdion 2011). Most of the
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observations within this category are located withell irrigated areas and are collected
in real-time.

Air quality monitoring networks are aggregatedittie AQ network category, as
shown in Figure 4.1b. The AIRNow network combim@squality stations from many
state and local agencies. MesoWest and MADIS coetio access selected air quality
networks directly that do not provide their complstiite of weather data to the AirNow
program.

Figure 4.1c depicts stations that are primariliemal (EXT network category) to
the contiguous United States. This category indudbservations from Environment
Canada, which is the Canadian equivalent of thetddnStates’ NWS and Federal
Aviation Administration (FAA) observing network. Asith many networks, there are
increasing concerns about the quality of these reaiens due to siting and quality
control issues (Environment Canada 2008). Obsemstirom Mexico are provided by
the Servicio Meteoroldgico Nacional (SMN) de Méxidthe SMN network is a synoptic-
scale observation network. The limited availablecudoentation suggests there are
quality control and reliability issues also assteda with this network (Servicio
Meteorolégico Nacional 2011). Observations fromwaek providers that are primarily
located along the coast or offshore (with a feveriior exceptions from the commercial
WeatherFlow network) are also included in this gatg with the majority provided by
the National Oceanic and Atmospheric Administration

The FED network category consists of land basesemfations from federal
agencies, excluding observations maintained byN#M&S/FAA and those used primarily

for agricultural, hydrological, fire weather, or @juality purposes. As shown in Figure
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4.1d, most of these observations come from locdlragional networks, except for the
nationwide MADIS Non-commissioned Automated Weat®dserving System and the
Climate Reference Network. Generally all of thestworks have well-defined siting and
maintenance procedures, but it should be recognihatl even the highest quality
networks can have standards different from whatymesers might expect. For example,
wind direction is not available from the Climatef&ence Network since the wind speed
sensor at 3 m is intended to estimate under catchprecipitation (National
Environmental Satellite, Data and Information See/2003).

Hydrometeorological networks are grouped into H¥DRO network category
(Figure 4.1e). The majority of observations arepdiegd by the Hydrometeorological
Automated Data System (HADS), which is itself agragate of stations owned and
maintained by many different agencies (Office ofdkdjogic Development 2011). Many
more observations in the HADS network report priéafon only and do not appear in
this figure; however, the ones shown here repoeast air temperature. The Snowpack
Telemetry network observations (SNOTEL; Schaefer Raetzold 2001) of the National
Resources Conservation Service are a very imporgsdurce due to their locations
generally at high elevation within the western EdiStates. Due to the meteor burst data
communication required for these remote locati@iservations often are not available
until a few hours after the valid time, and may betavailable for the RTMA. In addition
to precipitation measurements, all SNOTEL obseoveticollect 2-m air temperature.

Stations supplied to MesoWest and MADIS by a numtifetocal, state, and
regional sources are aggregated into the LOCAL osdwveategory (Figure 4.1f). The

largest network within this category is the OklalaoMesonet (Brock et al. 1995), which
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has been described as the “most prominent stat®na#sin the country (National
Research Council 2009) for its high quality instemtation, siting practices, and
documentation of observation metadata (Brock etl@®5). The West Texas Mesonet
(Schroeder et al. 2005) was modeled after the ©kfeghMesonet and follows similar
instrumentation and siting protocols. Some of ttlenLOCAL networks are aggregates
of stations often including a mix of stations dthgenaintained by the network provider
as well as stations managed by other local dataigers. For example, there is
considerable advantage to having WFOs work witllldata providers to locally access
their observations and then disseminate those wdisens to MesoWest and MADIS for
other users.

Figure 4.1g depicts the NWS network category, Wisccomposed of Automated
Surface Observing Stations (National Oceanic antio&pheric Administration 1998)
and Automated Weather Observing Stations (Federwtidn Administration 2011). The
majority of these observations are located in tHsamw regions of the eastern United
States. All stations within this network categorg aommissioned by the NWS and FAA
(although AWOS observations are maintained by siatecal agencies), and must meet
ASOS or AWOS equipment and siting standards.

Observations from the Automatic Position Reporti®ystem Weather
Network/Citizen Weather Observing Program (APRSWXNEBENOP; Gladstone 2000)
make up the majority of the PUBLIC network categ@y shown in Figure 4.1h.
APRSWXNET/CWOP stations are owned, installed anéhtamed typically by private
citizens with varied siting and reporting practi¢€hadwick 2005). Concerns over the

quality of observations from the APRSWXNET/CWOPwatk have been raised in the
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past, especially due to representativeness erssacmted with siting issues (Tyndall et
al. 2010). While Tyndall et al. showed that tempae observations appeared to be of
similar quality to observations from the NWS netwaroncerns remain regarding wind

measurements due to the frequent occurrence obwyedrstructions. The asymmetric

wind quality control described in Chapter 3 was aleged to mitigate some of these
issues.

The Remote Automated Weather Stations (RAWS) nédw@igure 4.1i) is
designed for wildfire management applications amgpsrted by the U.S. Forest Service
and many other federal, state, and local land arldfi'e management agencies
(Zachairassen et al. 2003; Horel and Dong 2010)WSAare often located in remote
locations preferably on slight south-facing slopéth limited nearby vegetation. Wind
sensors are located at 6 m instead of 10 m aneraorhetghts used by their NWS
observation counterparts. The lower anemometerhkeignd 10 minute averaging
interval have contributed to the perception thatrttvind speeds are less than what might
be expected leading to many RAWS being excludeu tite RTMA.

Finally, Figure 4.1j depicts the collective availa of stations located adjacent
to roads and railways (TRANS network category). Mamion Pacific Railroad stations
report 2-m air temperature only, as their primangiiest for deploying the equipment is
related to monitoring the expansion and contractainthe rails. Road Weather
Information Systems (RWIS) generally report allnstard meteorological variables as

well as other measurements from additional road@sn
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CHAPTER 5

RESULTS AND DISCUSSION

Description of Case Study

This research relies on the 1400 UTC 27 October020DNUS analysis to
demonstrate the methodology presented in Chapt&hid. particular analysis occurred
during a period of extremely active weather for #astern United States caused by an
extratropical cyclone that progressed across tleaiGrakes region prior to the case study
time period (Figure 5.1). This cyclone was oneh#f strongest noncoastal low pressure
systems observed within the United States withldlnest sea level pressure (955.2 mb)
recorded at Big Fork, MN. The storm was accompaniigd sustained winds in excess of
20+ m/s over the northwestern Great Lakes and @akagions and nearly 5 inches of
rain in Minnesota. The cold front, which extendedith from the low center, brought
severe thunderstorms and tornados from the southezat Lakes region down through
the southeast United States.

Figure 5.2 shows the downscaled RUC backgrounddfigked in the case study
for 2-m air temperature, 2-m dewpoint temperatuaed 10-m wind speeds. The
stationary and cold fronts are evident in the bamkgd fields in terms of gradients in

temperature, moisture, and wind speed from cemdiabissippi to Virginia and from
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Pennsylvania into Canada. The high winds assatiati¢h the cyclonic circulation
across the Dakotas and Great Lake region are guident as well.

As mentioned in Chapter 4, there are more than0OD0gbservations available to
adjust the background fields. Figure 5.3 depictssé¢h corrections to each of the
background fields, as well as the resulting analyseng the control casé & O for both
R, andZ, from Figure 3.1). The adjustments to the backgdofield appear relatively
modest on the scale of the entire continental dnéates when comparing the final
analyses (Figure 5.3b, 5.3d, and 5.3f) to the coalpd@ background grids in Figure 5.2.
However, the analysis increments shown in FiguBa,55.3c, and 5.3e are substantive
throughout much of the analysis domain, reflectithg impact of including the
observations. The background error decorrelatiogtte scales used in this control case
are designed to allow observation innovations fluémce the analyses over relatively
broad areas (~100 km) in areas without signifidapbgraphic relief. Positive (orange)
analysis increments denote where temperaturesmat syieeds in the background are too
low, while negative (purple) increments indicateenéh the background fields are too
high.

The largest analysis increments are concentratad the areas of high impact
weather (the strong extratropical cyclone over@neat Lakes and the stationary front in
the southeast United States) as well as over thlex terrain of the western United
States. Figure 5.3a shows that the background fietterestimates the intensity of the
stationary front across the southern states whitgastimating the intensity of the cold
front across New York. The background tended tddwmecold throughout much of the

Midwest and southern Plains with complex adjusts@ntemperature across the western
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United States. The RUC background tended to benimist in the upper Midwest and too
dry over the Dakotas and most of Texas (Figure)5.3¢he wind speed analysis
increments (Figure 5.3e) exhibit a general tendéa@nalyze lower wind speeds nearly
everywhere with the most significant adjustmentthtobackground field in the areas of
high winds associated with the cyclone as wellrathe warm side of the stationary front
in the southeast.

Considerable uncertainty exists whether the generalency for negative wind
increments when surface wind observations are lisezglor in the RUC or RTMA results
from the complex mix of issues related to wind sensiting as well as the
representativeness of those observations in fatemtel areas of complex terrain. The
solution adopted for the RUC and RTMA has beeresitrict severely the mesonet wind
observations used in those analysis systems (deelaret al. 2011). All possible wind
observations were used in this study specificali¢lp investigate this issue. Evaluation
of this case, as well as many others not shown, Iserggests that wind observations
assigned here to the PUBLIC category have a nepapeed bias likely due to siting.
However, the large wind speed innovations leadmghe large analysis increments in
Figure 5.3e in the Great Lakes regions are fourtanky in the PUBLIC category, but in
nearly all network categories. Hence, this tenddocyhe analysis wind speeds to be less
than the background wind speeds may reflect ingafit downscaling of the RUC winds

to conditions appropriate for the 10-m level.
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Evaluation of Data Density Constraints

Figure 5.4 shows the IDI fields for 1400 UTC 27 @wm#r 2010 for 2-m air
temperature, 2-m dewpoint, and 10-m wind speedguslire horizontal and vertical
background error decorrelation length scales oki@0and 200 m, respectively, that are
used for the control analyses shown in Figure Bl8e IDI field for temperature in
Figure 1.1 used horizontal and vertical backgroemdr decorrelation length scales of 40
km and 100 m that are used by the RTMA.) The @Vss as a metric of observational
data density but depends on the specificationbebbservational and background error
covariances (Equation 3.1). Not surprisingly, olsagonal coverage as defined by the
IDI in the eastern United States is greater thahiththe western United States due to the
smaller number of stations in the west as welhasassumption that background errors at
two gridpoints become less related to one othemvthe two gridpoints are separated in
elevation. Although not particularly evident in E&rg 5.4, IDI values in the west for wind
tend to be a bit smaller than for temperature owpdent temperature since many
hydrologically-oriented networks (e.g, SNOTEL, FHigud.1le) in the western United
States are not equipped with anemometers. Manyeo¥eéry small apparent data voids in
the eastern United States in Figure 5.4a and 5e4bltr from the assumption that
background errors on- and off-shore of water boidgether oceans or small lakes) are
unrelated to one another for temperature and nreisGhapter 3). This land/water
contrast assumption is not used for the wind bamkyl error covariance matrix due to
the presumption that the background errors remgimiall correlated across coastlines

(M. de Pondeca, personal communication).
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As discussed in Chapter 3, the IDI field can bedus®a constraint on the analysis
such that the background errors in data rich regaye assumed to be less correlated with
one another, hence allowing smaller scale deviatimetween the observations and the
background to be reflected in the final analysise Dackground errors in data voids can
be assumed to be more correlated with one anocgiierying deviations between the
sparse observations in such regions and the baokgro be felt over broader distances.
In the context of Figure 5.4, the decorrelationgkdnscales are narrowed for gridpoints
that are dark blue for thle= 1 andk = 2 polynomials described in Chapter 3, and
broadened for gridpoints that are red for ke 2 polynomial.

Figure 5.5 shows the increments and analyses fopéeture, dewpoint, and
wind speed using thle = 2 polynomial IDI constraint. Differences betweemgifes 5.3
and 5.5 can be seen in the increments of all figte Texas to the northern Midwest, as
well as from southern Appalachia to the northeastitdd States. Smaller scale
increments, collocated with areas of high obseowvatiensity, are evident in Figure 5.5,
such as in Wisconsin, lowa, Texas, and westerrfd@aia, which lead to small scale, but
large differences between the analyses.

These differences are not necessarily associatéd avibetter analysis since
narrowing the background error decorrelation lerggthles tends to lead to overfitting.
As described by Daley (1991) for polynomials anahdall et al. (2010) for variational
analyses, overfitting artificially creates false ximaa and minima that are not
representative of the data, or in the case of tranal analyses, the background field and
the observations. In variational methods, the ilil@d of overfitting errors appearing in

data sparse areas increases as the analysis tsagoed more tightly to the observations
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(Tyndall et al. 2010). Overfitting errors are edplg¢ evident in Figure 5.5e as an
offshore band of much larger negative incremersfi/irginia to Maine relative to that
seen in Figure 5.3e. This band and the smallemsizcy negative increment band farther
offshore is a result of the extreme gradient ofeobation density from the coast to the
offshore zone. While not shown here, these overtterrors also appear, not
surprisingly, in the same region of the wind analybthek = 1 polynomial is used to
compute the horizontal and vertical decorrelat@mgth scales since that applies the same
constraint in data rich areas.

Besides the overfitting errors presented abovdsbeye features throughout the
Great Lakes region in the wind analysis of Figurgf $esult from weak wind speed
observations where the background wind speeds wte lgqrge. This apparent noise is
lessened in the control wind analysis in Figurd,5ich suggests that the data density
constraint, if applied for wind, must be accompdnieith effective removal of
unrepresentative observations as part of a quadityrol procedure.

As applied here, the broadening of the backgroumdr elecorrelation length
scales in data sparse regions does not appearve éndarge impact on the analysis
increment fields (compare Figure 5.3 and 5.5). Mafsthe analysis increments that
appear to be affected are located along the Mebaeder and the United States coastline
from buoy observations. Although data density 18 lo many mountainous areas of the
western United States, the apparent limited impatiroader decorrelation length scales
in many of those areas is likely due to the comthuidominance of the elevation

constraint on the decorrelation length scale.



78

However, broadening the decorrelation length scalsimg thek = 2 polynomial
instead of thék = 1 polynomial) comes at significant computationapexse as well.
Increasing the variation localization threshold talice (Chapter 3) increases the
computational time to compute the arraﬁy,sk-IT andHPy, and significantly increases the
memory requirements of the analysis. For exammemmtinngHT andHP,, with the
broadened decorrelation length scales for 2-meanperature for this particular case on 8
processors requires an additional 4 minutes aptesrithe memory requirements. Hence,
the potential benefits of increasing decorrelatemgth scales in data sparse areas must

be weighed against these increased computationaireenents.

Sensitivity and Impact to Observation Networks

As described in Chapter 4, observation sensitiyidy/dy,) and observation
impact G) were computed for every observation in the c&seys Because of the large
number of figures that would be required to describe sensitivity and observation
impacts for all variables and all networks, the rapph will be demonstrated here in
terms of observation impact for 2-m air temperatarehe control case (Figure 5.3) and
thek = 2 polynomial case (Figure 5.5). The impact of dewpand wind speed
observations will be briefly summarized near thd ehthis section followed by an even
more cursory summary of observation sensitivityhss

As specified by Equation 4.6, the observation imp@c is the product of an
observation’s innovation and its sensitividyJ /dy,. As a result of the cost function used
in this study (Equation 4.4), the sensitivity degieron the analysis increment at the

observation location. Hence, the impact will teadé positive since the innovation and
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sensitivity will usually have the same sign, iia.the case of an isolated observation, a
positive (negative) innovation will tend to leadlégally a positive (negative) increment.
Negative impacts are likely to occur only where desiation of an observation from the
background differs in sign and has a large magaitethtive to its neighbors, which may
reflect either an observation in error or a re@ligteather phenomenon on a scale smaller
than that assumed a priori for the background gri®ince negative observation impacts
are found to only comprise ~20% of the total arelrtimagnitudes tend to be generally
smaller than the corresponding positive ones, tgacts are ranked in terms of their
absolute value from smallest to largest based eriihire sample of all observations.

The methodology to evaluate observation impactllistrated in Figure 5.6,
which plots the observation impact percentile byesking network category for the
control case (Figure 5.3). Figure 5.6 focuses osepfations in the upper and lower
guartiles (i.e., observations that had the most abst impact on the analysis,
respectively). Because the percentiles of obsematnpact depicted in Figure 5.6 may
overlap each other in data rich areas, the imgaetplotted in order from least impact to
the most impact in order to identify those regiovisere those particular observations
tend to have the greatest affect in adjusting gekground field.

Many of the first panels in Figure 5.6 tend to destmte the strong dependence
of observation impact on station density as carsd®n by comparing Figure 5.4 and
Figure 5.6. The preponderance of high percentdd)(vs. low percentile (blue) impacts
of agricultural (AG) temperature observations ie&atto the entire sample of
observations is evident in Figure 5.6a. In contragt monitoring stations (AQ; Figure

5.6b) have more stations in the bottom quartile, IAG stations tend to be in more
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remote locations than AQ stations located in urbeeas where many other data assets
are generally available. In addition, it is possiltd infer from Figure 5.3a that the
analysis increments in this case tend to be smahe vicinity of the AQ observations,
e.g., along the northeast United States coasherCentral Valley of California, or along
the coast of southeast Texas. Similarly, Figure Steows the frequently high impact of
temperature observations from outside the contatebhited States (EXT category
networks) where data density tends to be low. @ffshstations in the Gulf of Mexico
tend to have relatively low impact, even thoughirtlsensitivity is high (not shown),
since the observations and background do not ditibstantively. Networks grouped into
the FED category (Figure 5.6d) also have a higeetgmtage of high observation impact
temperature observations than low impact obsemstidlany of these high impact
observations are found in data sparse areas, wadlgifin Nevada, Utah, and Idaho. The
importance of observations in generally data spaeggons is particularly evident in
Figure 5.6e for the HYDRO network category. SNOT@&tiservations at high elevations
in the Sierra, Cascade, and Rocky Mountains temchdoit very high impact.

The broad range of networks aggregated into the AlOCategory exhibit
regional dependencies due to the type of weathemtawnderway at this time as well as
station density (Figure 5.6f). The West Texas Mes@ontains the majority of the high
impact temperature observations in this categoey tdutheir large positive observation
innovations leading to large temperature analystseiments over much of this region
(Figure 5.3a). In contrast, observations from thethern half of the Oklahoma Mesonet
and Florida Automated Weather Network tend to Haweimpact because of the small

departures in temperature from the background asehregions. The contribution of
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NWS network observations to the analysis is seetih®&igh impact observations across
the Midwest and southward into Texas (Figure 5.6pwever, the NWS category also
has a large number of low impact observations cunated along the coast of the
northeast United States, which are the result @ilsoibservation innovations in the area
and high data densities.

Although there is a prevailing tendency to disnobservations provided by the
general public through the CWOP program (PUBLIOnmek category), Tyndall et al.
(2010) showed that the error characteristics fonpterature observations from those
stations are similar to those from other networkrees. Similarly, Figure 5.6h shows
that the impact of temperature observations fronBBHQG stations can be high and
consistent in terms of their locales with thosevmted from other networks (e.g.,
compare to the NWS observations in Figure 5.6gdther words, if the background field
differs significantly from the actual weather, thBBLIC observations can be quite
useful, especially if there are relatively few atlobservations nearby. However, as will
be shown later, the vast majority of PUBLIC tempear@ observations have low impact
and those stations are simply obscured in Figuge. 5.

The impact of temperature observations from theAFSAnetwork is depicted in
Figure 5.6i. Since RAWS temperature observationstritute significantly to the
negative temperature analysis increments in thentamous regions in the western
United States (Figure 5.3a), many of those statextsibit high impact. In addition,
RAWS stations extending northeastward from easkestas have a large impact in this
case consistent with those of NWS and PUBLIC stat@ong this swath. Finally, Figure

5.6] shows the impact of temperature observatioos fthe transportation network
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category. Due to their coverage in otherwise dat@ vegions, TRANS temperature

observations contribute frequently to the tempeeatanalysis in the western United

States as well as to the broad region of the pesi@mperature analysis increment found
across the Midwest.

To evaluate the influence of the background erewodrelation length scales on
observation impact, results from tike= 2 polynomial case (Figure 5.5) are now
presented in Figure 5.7. Not surprisingly, this ifiodtion of the decorrelation length
scales increases the observation impacts for nksmbiat are primarily located in data
rich regions. For example, the percentage of higipacct observations within the
PUBLIC network (Figure 5.7h) increases comparedhw control case (Figure 5.6h),
with observations near many urban areas (Dallas, D&troit, Ml; Chicago, IL, San
Diego CA; San Francisco, CA; Denver, CO; Portla@R) increasing their impact
relative to all the other observations in this cades improvement in the number of high
impact observations in the PUBLIC network comeghat expense of the observation
impacts of the RAWS, EXT, and HYDRO network categ®r For example, the impact
of RAWS temperature observations is significandguced along the Appalachian and
Sierra Nevada Mountains (compare Figure 5.7i touféig5.6i) while the impact of
HYDRO observations is reduced in the mountainogere of the Intermountain West.

Figure 5.8 summarizes the percentile rank of olaenv impact for all available
stations aggregated into the 10 network categtnegsare computed from analyses of the
3 variables (temperature, dewpoint temperature, aml speed) using 5 distinct
background error decorrelation length scales. Thpeu left panel of Figure 5.8a

summarizes the results previously shown in Figuenhile the lower right panel of that
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figure summarizes the results shown in Figure Bh& count of stationsy(axis) with
observation impacts that fall into each decile gatg (x axis) is color coded for each of
the 10 network categories.

First, the preponderance of observations availtde the PUBLIC category
tends to dominate all panels in Figure 5.8. Fomterature (Figure 5.8a), there are larger
numbers of PUBLIC observations that have low imghen high impact regardless of
the assumptions related to the background errarddation length scale. Narrowing the
horizontal decorrelation length scale in data raseas (middle left and bottom left
panels) slightly increases the number of high impAUBLIC observations, at the
expense of the number of high impact observatiom fother network categories, such
as RAWS and NWS. Narrowing both horizontal andigattdecorrelation length scales
(middle right and bottom right panels) further mases the number of high impact
PUBLIC temperature observations.

In contrast to PUBLIC observations, the count bEervations in each decile
category is relatively flat for NWS observationsl{gw bars) and to a large extent
independent of the assumptions related to backdrauror decorrelation length scale
(Figure 5.8a). This is consistent with the ressliswn in Figure 5.6g where there was
considerable regional dependency in observatioraainfpr NWS observations. Many of
the other networks exhibit similar tendencies. Hasve RAWS (magenta bars) tend to
have more stations with high impact than lower iotpa

Figure 5.8b summarizes the impact of dewpoint alagEms and the results are
generally similar to those shown for temperaturguF@ 5.8a). (The total number of

humidity sensors is lower for the AG, HYDRO, and ANS network categories.)
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Application of the data density constraints onlygtglly increases the impact of
observations in the PUBLIC network category. Ouethk influence of the data density
constraints on the impact of dewpoint observatiappears to be much less than the
influence on the impact on temperature observations

The statistics obtained from wind speed observatghown in Figure 5.8c exhibit
very different characteristics compared to theisias from temperature or dewpoint
observations (Figures 5.8a and 5.8b). For thergbanhalysis (upper left panel), there
are as many stations in the PUBLIC network categatl high impact as low impact
while the number of high impact observations insesaas the background error
decorrelation length scales shrinks. The increasgact of PUBLIC wind observations
from the application of the constraints comes ateékpense of the impact of the NWS
and RAWS observations. The high observation impfaota the stations in the PUBLIC
category are related to the aforementioned sitind sepresentativeness issues of
PUBLIC observations. In addition, occasional, polysincorrect or misreported, calm
winds obtained from PUBLIC stations produce stroegative observation innovations
as well as strong negative analysis incrementscanttibute to the high impacts of this
category. Application of the asymmetric wind obsgion quality control discussed in
Chapter 3 is one step towards mitigating for thesseies, rather than the common
operational practice of simply omitting all wind sdyvations from the PUBLIC
networks.

As illustrated in this section, observation imp#gtappears to be a useful metric
for assessing the relative role of observationsth@ development of analyses. An

alternative metric is simply the sensitivig¢J /0y, , which depends only on the locations
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of the observations and the analysis incrementsttsr case study. The concept of

analysis sensitivity is of particular relevance tiamgeting observations in a complete data
assimilation system where additional observatioay tve of particular importance for a

future forecast, yet the value of the observatlmat tvould be obtained by that targeted
observation is unknown at that time (Langland e1899; Baker and Daley 2000).

The interpretation of observation sensitivity imstetudy has been judged to be of
less relevance for evaluating the relative impartamf observations from specific
network categories. A large sensitivity could test a station where an observation
matches the background but is surrounded by obs@ngawith large deviations from the
background, e.g., a station with a strong wind regarrounded by erroneously calm
wind reports would be evaluated as having a larggative sensitivity. Summary
statistics of the magnitude of sensitivity are préed in Figure 5.9 in a manner similar to
that presented in Figure 5.8 for impact. Hencegdgpositive and negative sensitivities
both appear in the highest percentile categoriesesihere is no sign preference for the
sensitivity metric.

The percentile distributions of temperature obssrmasensitivity in the control
case (upper left panel of Figure 5.9a) have mamylai features to those of observation
impact (Figure 5.8a). A notable difference is tektive number of stations in the upper
20" percentile in the HYDRO category such that the HRobservations tend to have
more stations with high impact (presumably duentlocally larger innovations in many
remote mountainous areas) than with high sengitivlipplication of the constraints
specified by thér = 1 andk = 2 polynomials increases the influence of the PUBLIC

category more when measured by observation sehgsiiivstead of by observation
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impact. This effect is especially enhanced whenhibrézontal and vertical decorrelation
length scales are both narrowed.

The percentile distribution of dewpoint observatisensitivity is depicted in
Figure 5.9b, and is similar to the distribution feamperature observations. As the
decorrelation length scales narrow in high obsematlensity regions, the counts of
PUBLIC stations with high sensitivities tend to ri@ase. The sensitivity metric tends to
accentuate the importance of the RAWS networks eoatpto that of the impact metric.

The count of wind speed observation sensitivitiethe upper 20 percentile from
the control analysis (upper left panel of Figur@a).is substantively less than that of the
wind speed observation impacts (upper left panéligfire 5.8a). Application of the data
density constraints tends to homogenize the seitigt from the PUBLIC network
stations, in contrast to the increasing impacthef RUBLIC stations as the decorrelation
length scales are narrowed. While a large pergenth NWS and RAWS stations have
high wind observation sensitivities in the contolalysis, the percentages again tend to
remain relatively constant when the decorrelatemgth scales are decreased.

Another notable feature in the summary statistesafind speed sensitivity is the
very high percentage of stations in the top ddode the EXT networks (solid blue bars
in Figure 5.9¢). Nearly all of these highly senatilocations are located offshore in
relatively data void regions adjacent to onshorghllyi data rich areas. This high
sensitivity may be due to the super-sensitivityfaat, first described by Baker and Daley
(2000). Super-sensitivity typically occurs wherarghchanges in observation density are
found. The overfitting errors in the wind analygsisrements seen in Figure 5.3e may

result from the combination of super-sensitivityg strong observation innovations of the
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coastal observations, and constraining the analgsistightly by narrow background
decorrelation length scales. Clearly, there isaaldoff between analysis quality and
observation impact and sensitivity. It would be gible to force the observation impact
and sensitivity to be high by drastically reducitigg background error decorrelation
length scales, which would in turn force the analys have many bull’'s-eyes in data rich

areas and overfitting issues in data voids.
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Figure 5.. continuedb. 2-m air temperature analysis°C.
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Figure 5.. continuede. 10-m wind speed analysis increments in |
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Figure 5.6. Observation impact percentile frm air temperature for 1400 UTC October 2010 using constant decorrelation

scales, grouped by network category. a. AG network category.
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Figure 5.8. Observation impact percentile distribution by network category for 1400 UTC
27 October 2010 for temperature, dewpoint, and wind speeds for all 5 specifications of
the background error covariance studied in this research. a. 2-m air temperature

observation impact percentile distribution.
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Figure 5.8. continued. c. 10-m wind speed observation impact percentile distribution.
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Figure 5.9. Observation sensitivity percentile distribution by network category for 1400
UTC 27 October 2010 for temperature, dewpoint, and wind speeds for all 5 specifications
of the background error covariance studied in this research. a. 2-m air temperature
observation sensitivity percentile distribution.
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Figure 5.9. continued. b. 2-m dewpoint temperature observation sensitivity percentile

distribution.
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Figure 5.9. continued. c. 10-m wind speed observation sensitivity percentile distribution.



CHAPTER 6

CONCLUSION

Summary

High resolution spatial and temporal objective acef analyses are needed for
many different mesoscale nowcasting and short-tem@casting needs. Unfortunately,
model output from many operational numerical modelsnable to fill this need due to
their coarser resolution as well as their inabitiyappropriately model or parameterize
many boundary layer processes. Accurate surfadgsmsacan be created by using this
model output as a first guess and using surfaceme¢®bservations to correct this first
guess through data assimilation.

This study presented the UU2DVar, a 2DVar analysd that can assimilate

thousands of surface observations to produce sudaalyses of 2-m air temperature,

2-m dewpoint temperature, 10-m+ andv- wind components, 10-m wind speed, and
surface pressure. Unlike its predecessor (the L3$Ag, UU2DVar can be run over
continental scale domains because it solves thatwaral cost function in observation
space instead of analysis space, greatly redudiagnecessary memory to store the
background error covariances. The majority of tHé2DVar’s routines are written to
take advantage of parallel processing, greatlyedsing the computational time required

to compute its background error covariances aravail it to be run over a continental
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scale domain within real-time constraints. The laraspeedup of the UU2DVar's
functions to compute the background error covagans a function of the amount of
memory of the computer system used to run it; systevith more memory can take
advantage of the processor computing larger blatkthe covariance array at once,
increasing the actual speedup towards the ideatieefdct speedup.

The UU2DVar is written using the MATLAB programifgnguage, allowing it to
be run with any operating system that supportsMAd LAB software (Windows, Mac
OS X, and Linux). Earlier versions of the UU2DVavi also been compiled using the
MATLAB Compiler, which has allowed the code to benron systems without
MATLAB licenses using the freely available MATLAB dtpiler Runtime as an
executable binary. Users of the UU2DVar do not haveupply their own observations
and background fields, as the tool is written ttedface with the University of Utah
THREDDS server and MesoWest database; howevels bage the option to incorporate
their own observation datasets.

The UU2DVar provides a flexible platform from whiobbservations from
heterogeneous surface mesonets can be examinedivadlje The National Research
Council (2009) recommended improved metadata, gasdity control procedures, and
understanding of the relative merits of differingtal sources as ways to increase the
utilization of such observations throughout the tiven enterprise. The development of
the UU2DVar and its adjoint was instigated withgb@oals in mind.

While the UU2DVar shares its background field adlvas a similar 2DVar
assimilation technique with the RTMA, its analystiffer from those of the NCEP

system due the different assumptions used to gendlee analyses. Because the
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UuU2DVar computes its analyses in observation spdme UU2DVar utilizes a terrain
field closer to that observed to compute its baokgd error covariance, which helps to
explain why the largest differences between the D\ and the RTMA analyses tend
to be located in areas of complex terrain.

To illustrate the applicability of this system aexipand on prior research (Horel
and Dong 2010; Tyndall et al. 2010), a single cgae examined in depth with particular
attention placed on the dependence of the anaystem to variations in the background
error covariance specified as a function of datasig. Data density is computed in
terms of the IDI field over the entire CONUS. Usadeéhe UU2DVar adjoint instead of
leave-one-out data withholding experiments (as dpnelorel and Dong [2010]) allows
for an efficient methodology to determine the sevisy and impacts to all observations.
This study demonstrates that it is possible tou#sging decorrelation length scales in
specifying the background error covariance as \wasllthe efficiency of the adjoint
methodology to determine the impact of varying degsets. Further study is required to
assess whether using a data density criterion tst@n the analysis is beneficial.
However, it is clear from this single case thatex&eme variations in data density over
the continental United States are a challengegsiverfitting can result if the analysis is
too tightly constrained. Additional research maywhthat a “flatter” polynomial, in
which decorrelation length scales do not decreassgnificantly in data dense regions,
may prove more beneficial to the analysis. Furtleen forecasters utilizing such
analyses must help assess whether it is more ibithéd have a smoother analysis, or

one that is able to resolve small scale featuresrevthe observing network is dense.
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Observation impact appears to be a more robustionfdr contrasting the
influence of observations than observation sensitivObservations with high impact
draw attention to locations with both high sengyivas well as large innovations.
However, it is difficult to distinguish through sple objective criteria between high
impact observations resulting from meaningful deeies in local weather from the
background, erroneous or unrepresentative obsengtior erroneous features in the
background itself. Alternative cost functions tmatt examined here (mean squared
difference between the analysis and background ineeentire grid) could be specified
by Equation 4.4 in order to focus on other questioh interest, e.g., particular flow
characteristics within limited domains.

For the analysis hour examined here, stations ita dparse regions where
deviations from the background were large tendeabtcee high impact, while stations in
data rich urban areas tended to have lower impactexample, the HYDRO and RAWS
network categories, with many stations in remotations, had larger numbers of high
impact temperature observations than low impacemagions. RAWS observations also
had many stations with high dewpoint temperaturpaich as well, due to their strong
observation innovations in many regions of the emstUnited States. Stations in the
PUBLIC category tended to have very high obserwaimpacts on the wind speed
analysis, which may be the result of sensor siiisges as well as unrepresentative and
erroneously calm wind observations collocated witih background field wind speeds.
Applying the four data density constraints to timalgses increased the number of high

impact PUBLIC observations in all fields.
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This research, which includes the UU2DVar analy&sl, as well as an
investigation of observation impacts for an indiatl case study, helps to lay the
foundation for additional research focusing on adsding issues associated with the
development of the NNoN. A parallel study applyitie methodology presented in
Chapter 4 to 100 cases of significant weather sventalready underway and some
preliminary results have already been collectedos€hresults confirm the higher
observation impacts of networks located in datarsgpaegions (such as the RAWS
network) as seen with the single case study predantChapter 5. The implementation
of observation sensitivity and impacts as a meastiguality control for observations

part of the NNoN is also being discussed with MessiWesearchers.

Recommendations and Future Work

The development of the UU2DVar and usage of theatranal adjoint to
determine observation impact has led to a numbeadditional questions, as well as
goals for future work. These recommendations aralsgimr future work are expanded
upon here:

1. Collection and regular updating of observation metadata is necessary for
the production of high quality surface analyses. As shown by the wind
analyses computed as part of this research, thmikg®on of poor quality
observations can greatly reduce the quality of ahalyses. Unfortunately,
without complete siting information, as well obs#ign maintenance and
station instrument information, it is difficult tdifferentiate good quality

observations from poor quality observations, evath whe use of more
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advanced quality control procedures. Providers ldeovation data should
also make every effort to make network descriptpublications available
with the data, and large observing networks (esfigcfederally funded
networks) should be required to maintain documdetribing the standards
used within the network.

. Advanced quality control procedures should be implemented within the
UU2DVar. Implementation of more rigorous quality controbpedures on
the observations retrieved from the MesoWest databaed by the UU2DVar
will substantively improve the utility of this sysh. The quality control steps
implemented within this version of the UU2DVar dmaited to removing
gross errors based on error characteristics asstondide entire domain as a
while. A number of additional quality control prakees are under
development by the MesoWest team and will helgtoave many commonly
occurring problems. For example, incorrect stagtavation or incorrect base
line pressure values are common in mountainous afeguality control step
that uses the standard deviation of the backgrdietdl immediately around
the observation instead of across the entire domsipresently implemented
would be a substantive improvement. The asymmetradity control for wind
observations described in Chapter 3 has already ingestigated over a large
sample of cases and appears to be effective aviegisome of the erroneous
observations found in the PUBLIC network wind olbs#éions. An additional
quality control measure, in which observations einecked against nearby

gridpoints from a preliminary analysis before tregg actually assimilated by
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the final analysis would also improve analysis dyaland would be
straightforward to implement using legacy code fribra earlier versions of
the UU2DVar.

. Adjust observation error based on network characteristics. Even without
complete observation metadata, assumptions can &ee nabout certain
networks and the quality of their observations.lifiieary work that has
already been completed for a sample of 100 casesrrates this approach
is promising. Increasing observation errors fommeks or network categories
with representativeness or other recognizable ®rappear to improve the
analyses as an alternative to simply eliminatinggesof those observations
through commonly used network blacklists. In addifivariable observation
errors increase the complexity of the observatiensgivity metric, as it
becomes a function of observation locations, amalygrements, and the
background and observation errors.

. Observation sensitivity and impact should be studied as a function of
different cost functions over many cases to identify important
characteristics of individual observations and mesonets. Preliminary
research using the aforementioned sample of 106relift analysis hours on
days of high impact weather in the United Stateggests that observation
impact combined with data density are useful metrfior such studies.
However, the domain-scale root-mean squared difterecost function,
although commonly exploited in similar studies, nist the only possible

choice. Examining whether regional analyses conabimi¢h cost functions of
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interest to particular aspects of the weather priteyr may be warranted. For
example, wind energy companies may be interestedpabilities of a local
boundary layer analysis system to estimate windeases or decreases on
time scales of 5 minutes to an hour as a functfafifferent data resources.
Use the UU2DVar as an additional quality control tool for mesonet
observations. Simplified versions of the UU2DVar could be implemted for
real-time quality control of many variables arclivéen the MesoWest
database. Statistics of observation sensitivity @mgkrvation impact collected
routinely from hourly analyses would help to detern poor quality
observations within a network. Observations witmsistently high impacts
over a large sample of cases are most likely bjasgther through
instrumentation errors or representativeness erhoddition, quality control
procedures based on negative observation impacysbmavarranted, since
they reflect observation innovations that are ledain a region of analysis

increments of opposite sign.
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