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ABSTRACT  

 

 

  Buckling-restrained braces (BRBs) are widely used in new and existing 

 

buildings to enhance their performance during large earthquakes. The new generation  

 

BRB has connection plates welded perpendicular to core plates, which makes the  

 

manufacturing easier compared to current construction. The new generation BRB has two  

 

connection plates on each end, which makes the pinned end, bolted end, and welded end  

 

much easier to construct and connect the BRB to buildings. Nine full-scale experiments  

 

carried out in this research demonstrates the ability of new generation BRBs to perform  

 

equally well as current generation BRBs. 

 

Research has been done for the buckling force of the core plate and the contact  

 

force between concrete and core plate for conventional BRBs, but specific equations for  

 

buckling force and contact force considering the friction between concrete and core plates  

 

have been developed when the core plate buckles in a number of waves for strong-axis  

 

buckling. A theory based on the strut-and-tie model was developed to predict strong or  

 

weak axis buckling for a given BRB. In addition, finite element models were developed  

 

which are compared to the analytical results for determining the occurrence of strong-axis  

 

or weak-axis buckling, as well as the magnitude buckling load. 

 

Allowable ratio of lateral force to BRB axial compressive capacity for a certain  

 

casing length and cross-section is determined using finite element analysis, at which  

 

BRBs can deform up to 2% interstory drift without global buckling. Simulation of the  
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hysteretic performance of the nine BRBs tested in full-scale experiments is carried out  

 

using finite element analysis with quasistatic cyclic loads, and the results are then  

 

compared to the experiments. Finally, the factors which effected the out-of-plane  

 

buckling of the gusset plate in one of the experiments are investigated and measures to  

 

prevent this are offered.  
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NOMENCLATURE 

 

 

ACI     American concrete institute 

 

AISC     American institute of steel construction  

 

BRB     Buckling-restrained brace 

 

BRBF     Buckling-restrained-braced frame 

 

C-C-C     Compression-compression-compression 

 

C-T-T      Compression-compression-tension  

 

𝑒              Air gap size between the core plate and the concrete 

 

𝐸             Elastic modulus  

 

𝐸𝑟−𝑐𝑜       Reduced modulus of the core plate 

 

𝐸𝑟−𝑐𝑎       Reduced modulus of the steel casing 

 

𝐹𝐵           Contact force for the core plate from the restrainer. 

 

𝐹𝑛𝑠          Compressive force in the strut 

 

FKN       normal penalty stiffness factor 

 

FRP     Fiber reinforced polymer  

 

𝑖             Amount of wave number 

 

𝐼             Moment of inertia 

 

𝐼𝑠            Moment of inertia in the strong axis 

 

𝐼𝑤           Moment of inertia in the weak axis  

 

𝐿𝑐−𝑐𝑜𝑟    Critical length of the core plate, which is the length of core plate between   
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connection plates in longitudinal direction  

 

𝐿𝑐𝑜𝑟        Total length of the core plate. 

 

𝐿𝑤           Wave length in the weak axis 

 

𝐿𝑠            Wave length in the strong axis.  

 

LVDT     Linear variable differential transformer 

 

Msi      Million lbf per square in. 

 

𝑃             Axial compressive force on the core plate 

 

𝑃𝐸           Euler buckling force on the restrainer 

 

𝑃𝑖            Axial compressive force on the core plate when the core plate has i waves 

 

𝑃𝑦           Yield strength of the core plate 

 

PVS        Polyvinyl siloxane 

 

𝑡𝑐𝑎          Wall thickness of the casing 

 

𝑡𝑐𝑜𝑟        Thickness of the core plate  

 

𝑇            Tensile force in the tie 

 

𝑤𝑐𝑜𝑟       Width of the core plate 

 

𝑤𝑐𝑎         Width of the casing 

 

𝑤𝑠           Width of the strut  

 

𝑤𝑡           Width of the tie 

 

µ              Friction coefficient between the concrete and the core plate  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The concept of buckling-restrained braces was developed in Japan (1971).  

 

Conventional BRBs are composed of a slender steel core continuously supported by  

 

concrete inside a steel casing in order to prevent buckling under axial compression. The  

 

core and the concrete are decoupled to prevent interaction between them. BRBs appeared  

 

in the United States after the 1994 Northridge earthquake and are now widely accepted in  

 

building construction. The design of BRBs is regulated in current standards as a  

 

displacement-dependent lateral loading resisting solution. Buckling-restrained braces are  

 

widely used in both low-rise and high-rise buildings to provide lateral resistance for new  

 

and old structures during earthquakes and wind storms, as shown in Figure 1.1.  

 

Current configurations of commercial BRBs have the connection plate and core  

 

plate as one piece; the core plate is formed by reducing the cross-section of the steel plate  

 

in the middle section (Raddon, B., Pantelides, C., and Reaveley, L., unpublished report).  

 

Manufacturing of the core for the current BRB configuration wastes steel material and  

 

requires skilled labor and special machinery. To reduce manufacturing time and material  

 

cost, BRBs with a new configuration of steel core plates were designed by StarSeismic  

 

LLC.  

 

To evaluate the performance of the BRBs with a new configuration of steel core  

 

plates, nine full-scale new-generation BRBs were tested in this research at the Structural   
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laboratory of the University of Utah. During the tests and after opening of the tested 

       

BRBs, some phenomena were observed, such as strong-axis and weak-axis buckling of  

 

the core plates, bulging of the casing, and out-of-plane buckling of the gusset plate. This  

 

research aims to evaluate the performance of the new-generation BRBs, as well as  

 

understand and explain the phenomena observed regarding the BRBs.  

 

This dissertation presents research on the new-generation BRBs, including the  

 

laboratory tests, analysis of the test data, and explanation of the phenomena observed  

 

during the tests. Chapter 2 provides the literature review on the testing of BRBs and BRB  

 

frames, core plate buckling, design of the steel casing, and analysis of out-of-plane  

 

buckling of gusset plates.  

 

Chapter 3 describes the configuration of new generation BRBs and the  

 

experimental setup and loading protocols, evaluates the performance of the new-  

 

generation BRBs, and describes the phenomena observed in the tests.  

 

Chapter 4 derives the equations for buckling force on the core plates and the  

 

contact force between the concrete and core plates when strong-axis buckling of the core  

 

plates occurs. The equations of the buckling force are verified by numerical simulations  

 

using finite element analysis and are compared to the test results.  

 

Chapter 5 uses the strut-and-tie model to explain why the strong-axis or weak-axis  

 

buckling occurs to the core plates. The general equation is derived for the critical angle  

 

between the strut and the tie when core plate buckles in strong axis.  

 

Chapter 6 simulates the BRBs used in nine tests under cyclic axial loading using  

 

finite element analysis. The hysteretic loops and hysteretic energy dissipation are  

 

compared with those obtained from the tests to verify the simulation results. The same  
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parameters for the BRB models from the cyclic simulation are used for the model which  

 

is used to obtain the critical casing wall thickness for different length of the BRBs when  

 

the cross-sectional dimension of the casing is given. The relationship between  

 

eccentricity and BRB length for a given cross-sectional dimension of the casing is  

 

obtained. 

 

Chapter 7 focuses on the out-of-plane buckling of gusset plates. The tensile and  

 

compressive resistant capacity of the gusset plates used in the tests is calculated  

 

following the AISC Code (2011). The combination of the gusset plates and the  

 

connection plates used in tests 3 through 5 are simulated using finite element analysis  

 

under axial load and 1% of axial load as the horizontal load.  

 

Finally, Chapter 8 contains the summary and conclusions generated by the entire  

 

research.   
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Figure 1.1 BRBs applied in the J. William Marriott Library  

at the University of Utah 

 

        

 

 

 

 

 

 

 

 

  



 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

A significant amount of research on buckling-restrained braces and their  

 

connection assemblies has been performed. The research includes testing of BRBs and  

 

BRB frames, analysis of core plate buckling, design guidelines for the BRB casing, and  

 

analysis of the out-of-plate buckling of gusset plates. 

 

 

2.1 Testing of BRBs and BRB Frames 

 

BRBs are commonly composed of steel casing and steel core surrounding by  

 

concrete, which are called steel BRBs. Many steel BRBs have been tested (Chou et al.  

 

2014; Daniels 2006; Fahnestock et al. 2007; Genna et al. 2012; Ju et al. 2009; Liu et al.  

 

2012; Mazzolani et al. 2009; Palazzo et al. 2009; Raddon, B., Pantelides, C., and  

 

Reaveley, L., unpublished report; Romero, P., Reaveley, L., Miller, P., and Okahashi, T.,  

 

unpublished report; Staker 2002; Sun et al. 2011; Tremblay et al. 2006; Zhao et al. 2014).  

 

Miller et al. (2012) developed and tested self-centered BRBs with nickel-titanium shape  

 

memory alloy restrained by three steel tubes. Chou et al. (2014) developed a steel dual- 

 

core self-centering brace with post-tensioned tendons.       

 

New materials for either casing or core plate were tested as well, such as  

 

aluminum (Wang et al. 2013), Polyvinyl chloride (PVS) pipe (Rahai et al. 2009), and  

 

Fiber-reinforced plastic (FRP) rolled sheets (El-Tawil et al. 2009; Rahai et al. 2009).  
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Compared to steel, aluminum has lower strength, so BRB made of aluminum has lower 

 

compressive capacity, PVS is too brittle, and FRP is more expressive.        

 

Several kinds of configuration of cross-section of core have been tested as well,  

 

including round (Palazzo et al. 2009), rectangular (Daniels 2006; Mazzolani et al. 2009;  

 

Staker 2002; Sun et al. 2011), H-shaped (Ju et al. 2009), and core with steel angle (Zhao  

 

et al. 2014).  To reduce the stress concentration in the transitional zone of core, the core is  

 

either taped (Daniels 2006) or cut with radius (Raddon, B., Pantelides, C., and Reaveley,  

 

L., unpublished report).  Cutting core with radius requires skilled labor and special  

 

machinery. To make BRB easier to manufacture BRBs with connection plate prismatic  

 

to core were tested in this research.  

 

 

2.2 Review of Core Plate Buckling 

 

 When compressive axial force applied on a core plate exceeds the critical  

 

buckling force, the core plate buckles, and then the contact force between core plate and  

 

the restrainer (concrete and steel casing) occurs. It helps to determine if the BRB buckles  

 

under a certain load if the axial compressive force on the core plate and the contact force  

 

between the core plate and the concrete can be determined. Shen et al. (2007) proposed a  

 

mechanical model of line contact between the core plate and steel casing with finite  

 

stiffness under axial compression. Formulae were derived for deflection, moment, shear,  

 

and contact reaction of the steel casing during point contact and line contact between the  

 

core plate and the steel casing. Wu et al. (2012) established the equilibrium equation of a  

 

member subjected to axial and lateral force. Equations were derived to describe the  

 

deflection curve of the steel core plate under point contact and line contact. The  

 

equilibrium equation of the core plate with the axial compression and the contact force 
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was described in Eq. (2.1), in which P was the compressive force and T was the contact  

 

force between restrainer and the core plate. This equation is used for development of  

 

general equations for contact force between concrete and core plate, and axial  

 

compression on the core plate considering the friction between concrete and core plate.  

 

Friction between concrete and core plate was not considered in the research of Wu et al.  

 

(2012) but it will be considered in this research. 

  

                           𝑃𝑦 − 𝑇𝑥 + 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
= 0                    (2.1) 

  

 Lin et al. (2012) performed a series of cyclic load tests on a three-story, single- 

 

bay, full-scale, buckling-restrained-braced frame (BRBF). The frame responses were  

 

satisfactorily predicted by both OpenSees and PISA3D analytical models. The OpenSees  

 

and PISA3D were capable of performing inelastic analysis of the structural system for  

 

cyclic loads. The authors also estimated the local bulging force demand acting on the  

 

steel casing, which was defined by Eq. (2.2):  

  

                                              𝑓𝑝,𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥
2𝑠

𝑙𝑤/2
       (2.2) 

 

where 𝑃𝑚𝑎𝑥 was the maximum compressive load, 𝑓𝑝,𝑚𝑎𝑥 was the maximum bulging force  

 

given by the core plate, s was the air gap size, and 𝑙𝑤 was the wave length defined by Eq.  

 

(2.3): 

 

                                               𝑃𝑦 =
𝜋2(𝐸𝐼𝑤)𝑒𝑓𝑓

(𝑙𝑤/2)2
                                                       (2.3) 

            

where (𝐸𝐼𝑤)𝑒𝑓𝑓 is the equivalent flexural stiffness of the core plate, and 𝑃𝑦  is the nominal  

 

yield strength of the core plate. 

  

 The equations of wave length were developed for either strong-axis buckling or  

 

weak-axis buckling occurring on the core plate. Wu et al. (2014) conducted cyclic  
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loading tests and finite element analyses for six novel all-steel buckling-restrained braces  

 

(BRBs) using different loading patterns to investigate the core plate high-mode buckling  

 

phenomenon. Eqs. (2.4) and (2.5) were used to calculate the wavelength for strong-axis  

 

buckling and weak-axis buckling of the steel core plates, respectively. After the wave  

 

length is calculated, the wave number can be determined as well when the length of the  

 

core plate is certain. These equations will be used to determine the wave number of a  

 

given BRB.  

 

                                 𝐿𝑠 = √
4𝜋2(𝐸𝐼𝑠)𝑒𝑓𝑓

𝑃𝑦
= √

4𝜋2×0.02𝐸𝐼𝑠

𝐹𝑦𝑤𝑐𝑡𝑐
≈ 6𝑤𝑐                  (2.4) 

 

                                𝐿𝑤 = √
4𝜋2(𝐸𝐼𝑤)𝑒𝑓𝑓

𝑃𝑦
= √

4𝜋2×0.06𝐸𝐼𝑤

𝐹𝑦𝑤𝑐𝑡𝑐
≈ 11𝑡𝑐                 (2.5) 

  

where E was the modulus of elasticity of the core plate; 𝐼𝑠 and 𝐼𝑤 is the moment inertia of  

 

the core plate about the strong axis and weak axis, respectively; (𝐸𝐼𝑠)𝑒𝑓𝑓 and (𝐸𝐼𝑤)𝑒𝑓𝑓  

 

are the equivalent flexural stiffness of the core plate about the strong axis and weak axis,  

 

respectively; 𝑃𝑦  is the nominal yielding force of the core plate; 𝐹𝑦 is the nominal yielding  

 

stress of the core plate; 𝑤𝑐 is the width of the core plate; 𝑡𝑐 is the thickness of the core  

 

plate; 𝐿𝑤is the wavelength for strong-axis buckling of the core plate; and 𝐿𝑠 is the  

 

wavelength for weak-axis buckling of the core plate. In the above expressions, the yield  

 

strength of the steel core plate was assumed as 40.9 ksi. 

 

 

2.3 Review of Design Guidelines for the Steel Casing 

 

 The steel casing helps to prevent the global buckling of the BRB, so the buckling  

 

capacity of the BRB is vital. The most famous casing design rule followed the research of  

 

Watanabe et al. (1988), who suggested that 
𝑃𝑒

𝑃𝑦
≥ 1.5 to make sure that the braces could  
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show stable hysteretic performance, where 𝑃𝑒 is the Euler buckling load of the steel  

 

casing and 𝑃𝑦 is the yield load of the core plate. Midorikawa et al. (2012) introduced the  

 

buckling load of the restrained part,  𝑃𝐸, shown in Eq. (2.6) from Euler’s buckling load  

 

equation.  

 

                                                  𝑃𝐸 =
𝜋2

𝐿2
 (𝐸𝑠𝐼𝑠 + 𝐸𝑚𝐼𝑚)                   (2.6) 

 

where 𝐸𝑠, 𝐸𝑚 are the moduli of elasticity of the steel casing and mortar, respectively; 𝐼𝑠,  
 

𝐼𝑚 are the moment of inertia of the steel casing and mortar, respectively; and 𝐿 is the  

 

length of the core plate.  

 

 Eq. (2.7) was also proposed for the restraining force, 𝐹𝐵, applied from the casing  

 

and concrete to the core plate. 

 

                                                      𝐹𝐵 =
2𝑃𝑆

𝐿𝑚+𝜇𝑆
                        (2.7) 

 

where 𝐹𝐵 is the restraining force, P is the compressive axial force, 𝐿𝑚 is the half wave- 

 

length, 𝜇 is the friction coefficient between concrete and steel core plate, and S is the  

 

wave amplitude. The wavelength is the horizontal distance between two nearest peaks of  

 

the buckling steel core.  

  

 This ratio suggested by Watanabe et al. (1988) was obtained from authors’ test  

 

result, which are five BRBs with length of less than 11 ft., while BRBs tested in this  

 

research are more than 18 ft. long. There was some uncertainty as to whether the ratio of  

 

Watanabe et al. (1988) still worked for longer BRBs. Simulation method with ANSYS  

 

will be used to find the critical casing thickness to prevent global buckling of BRBs, and  

 

the critical thickness of casing obtained from the simulation result will be compared with  

 

those obtained using the ratio of Watanabe et al. (1988). 
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 2.4 Review of Analysis of the Out-of-Plane  

Buckling of the Gusset Plate 

                                                                      

 Gusset plates connect BRBs to beam-column frame in structures, so gusset plates  

 

have to be stiff enough to make sure BRB can fully perform its duty in an earthquake.  

 

Therefore, Gusset plates play an important role to make sure BRBs can fully perform  

 

during the earthquake. 

  

 AISC (2011) contains equations for the calculation of the tensile-resistant, shear-  

 

resistant, and compressive-resistant for the gusset plates. 

  

 Koetaka et al. (2008) proposed design criteria for BRBs to prevent out-of-plane  

 

buckling of the gusset plate and conducted a loading test to verify the criteria. Tsai et al.  

 

(2008) performed a series of pseudo-dynamic tests (PDTs) of a full-scale 3-story 3-bay  

 

buckling-restrained braced frame (BRBF) using concrete-filled tubes (CFT). The authors  

 

evaluated the design of gusset connections and the effects of the added edge stiffeners in  

 

improving the seismic performance of gusset connections. Chou et al. (2009) investigated  

 

the compressive strength and behavior of BRB frame (BRBF) central gusset plates in an  

 

inverted-V-braced configuration. Analytical results for both the BRBF model and central  

 

gusset plate connection model utilizing finite element models reasonably predicted the  

 

ultimate load of the gusset plate obtained from the frame test. Chou et al. (2012)  

 

evaluated a three-story buckling-restrained braced frame (BRBF) with a single diagonal-  

 

sandwiched BRB and a corner gusset in cyclic tests of a one-story, one-bay BRBF  

 

subassembly, and performed dynamic analyses of the frame subjected to earthquakes.  

 

Okazaki et al. (2012) examined the out-of-plane stability of buckling-restrained braces  

 

(BRBs) by performing large-scale shake table tests at E-Defense. Takeuchi et al. (2012)  

 

discussed the stability of BRBs and confirmed them by a cyclic loading test using out-of-
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plane displacement. Hikino et al. (2013) examined the out-of-plane stability of buckling- 

 

restrained braces (BRBs) with Large-scale shake table tests performed at E-Defense. Two  

 

specimens were subjected repeatedly to a near-fault ground motion with increasing  

 

amplification. Takeuchi et al. (2014) presented BRB stability concepts, including their  

 

bending-moment transfer capacity at restrainer ends for various connection stiffness  

 

values with initial out-of-plane drifts. 

 

 All research above focused on the out-of-plane buckling of gusset plates in  

 

strong-axis, which is caused by movement of the frame during the earthquake. The out- 

 

of-plane buckling of gusset plate in this research is about weak-axis. To explain this  

 

phenomenon, AISC code (2011) about the resistant capacity of gusset plate will be  

 

followed. And the contribution of connection plate to stiffness of gusset plate will be  

 

investigated as well by following AISC code (2011). 

 

 

 

 

  



 
 

 

CHAPTER 3 

 

 

EXPERIMENTAL RESEARCH 

 

 

BRBs tested for this research were designed and built by Star Seismic LLC., and  

 

tested at the Structural Laboratory at the University of Utah. In this section, the test setup  

 

used, as well as the phenomena observed from these tests, will be described. The  

 

compression strength adjustment factor, β, strain hardening adjustment factor, ω,   

 

cumulative inelastic deformation, η, and cumulative energy dissipation, E, are defined  

 

and calculated. The observed phenomena are combined with the plotted hysteretic loops. 

 

 

3.1. Description of Experiments 

 

 BRBs are widely used in new and old buildings in order to absorb the energy  

 

released from large earthquakes. In this section, the construction of a new-generation  

 

BRB is described, the connection details between a BRB and the loading frame are  

 

expressed, and the loading protocol is listed.  

 

 

3.1.1 BRB Specimens 

 

 Current BRBs that are in use in the market have the connection plate and the core  

 

plate constructed as one piece. The core plate is formed by reducing the cross-section of  

 

the steel plate in its middle section, as shown in Figure 3.1. Manufacturing of the core for  

 

current BRBs wastes steel material and requires skilled labor and special machinery. To  

 

reduce manufacturing time and material costs, BRBs with a new configuration are  
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developed.      

                    

 The new-generation BRB has the connection plates welded perpendicular to the  

 

core plates as shown in Figure 3.2, which makes the manufacturing easier compared to 

 

the current construction. Moreover, by manufacturing BRBs this way, there is no extra  

 

cutting of the core plate, so no steel is wasted; in addition, welding is much easier to  

 

perform than creating the radiused copes. Moreover, the new-generation BRB has two  

 

connection plates at each BRB end, which makes the pinned, bolted, and welded  

 

connections easier to construct. 

 

These new BRBs consist of concrete embedded inside of a steel casing, as well as  

 

one or two core plates welded to four connection plates, with air gaps around both core  

 

plates and connection plates, and air intervals between the connection plates and the  

 

concrete, as shown in Figure 3.3. 

 

Nine new-generation BRBs were tested in this investigation, in full-scale  

 

experiments performed at the Structures Laboratory of the University of Utah. The  

 

characteristics of the nine specimens are summarized in Table 3.1. All BRBs had a square  

 

cross-section and core plates ranging in width from 6.25 to 10 in. Four of the BRBs had  

 

dual core plates and five had a single core plate; the thickness of a single plate was 1 in.  

 

(𝑡𝑐𝑜). The material properties of all core plates were the same: The yield stress was 40.9  

 

ksi and the ultimate strength 59.7 ksi.  Eight BRBs had a length of 219 in., and the  

 

remaining one was 209 in. long. The outside cross-sectional dimensions of the casing  

 

were either 12 in. × 12 in. or 10 in. × 10 in.; the steel casing wall was ¼ in. thick for all  

 

specimens.  
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3.1.2 End Connection Details 

 

 Each BRB was brought to the load frame vertically, as shown in Figure 3.4; the  

 

top gusset plate was then attached to the hydraulic actuator that has an inline load cell.  

 

There was an additional plate welded perpendicular to the bottom gusset plate, which is  

 

called the base of the bottom gusset plate, mounted in the horizontal direction, as shown  

 

in Figure 3.5. Two vertical steel plates, parallel to the bottom gusset plate, were bolted to  

 

the east and west walls of a tie-down steel box; once the bolts were tightened to the walls  

 

of the tie-down steel box, the bottom gusset plate was fixed to the ground and tension  

 

could be applied to the BRB.      

 

Element tests, as well as subassemblage tests, were performed in the lab. Two  

 

BRBs were analyzed with the element test, in which the BRB was assembled vertically to  

 

the load frame without any initial moment. Seven BRBs were tested using a  

 

subassemblage test, in which the BRB was assembled vertically to the loading frame with  

 

an initial moment that was produced by shifting the bottom of the BRB back to the offset  

 

locations. Each BRB was assembled to the loading frame with either bolted or welded  

 

boundary conditions. The end connection conditions and the test method for each  

 

specimen are listed in Table 3.2. 

 

The BRB is assembled to the building by being connected to the beam-column  

 

frame, as shown in Figure 3.6 by the solid line. When a horizontal load, P, is applied due  

 

to an earthquake, the BRB is in compression and the buckling restrained brace frame  

 

(BRBF) deforms, as shown by the dotted line in Figure 3.6. Bending moments are created  

 

at both ends of the BRB due to the horizontal movement of the frame, which depends on  

 

the displacement, Δ and connection details; this displacement increases gradually.     
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To derive the performance of the BRB in the BRBF, the subassemblage test  

 

method specified in the AISC-341 (2010) is used. The procedure of installing the BRB  

 

into the loading frame for the subassemblage test is shown in Figure 3.7. The BRB is set  

 

up vertically between the gusset plates as shown in Figure 3.7 (a). The bolts are then  

 

inserted in the bolt holes, attaching the BRB to the gusset plates, as shown in Figure 3.7  

 

(b). The bottom gusset plate is then moved to the left so that the BRB will have a 3 in.  

 

offset from the original location, as shown in Figure 3.7 (c). The screws on the top and  

 

bottom gusset plates are then tightened, as shown in Figure 3.7 (d). The bottom gusset  

 

plate is then moved back to the original location; bending moments are created on both  

 

ends of the BRB, as shown in Figure 3.7 (e).  

 

 

3.1.3 Loading Protocols 

 

 The AISC seismic provisions require that BRB design should be based on results  

 

from qualifying cyclic tests. The procedures and acceptance criteria of these tests are  

 

stipulated in AISC-341 (2010); braces must be tested up to the design story drift (2%  

 

interstory drift) and achieve a cumulative inelastic deformation 200 times the yield  

 

deformation. Any test protocol that meets these two criteria is permitted, but most test  

 

protocols consist of two cycles at ±100% of the yield displacement of the core plate,  

 

followed by a displacement corresponding to ±0.5% interstory drift. Then the  

 

displacement increases with an increment corresponding to± 0.5% interstory drift until  

 

±2% interstory drift. Additional cycles are required to achieve a cumulative inelastic  

 

axial deformation of at least 200 times the yield deformation, which is only required for  

 

element specimens, not required for subassembly specimens. The yield displacement of  

 

the core plate is predicted based on the yield stress of the core plates. 
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 A displacement control mode was used in all quasi-static cyclic tests with a  

 

loading rate of 0.02 in./sec. The actuator loading used is shown in Figure 3.8 and follows  

 

the requirements of the loading sequence of the AISC seismic provisions. The test  

 

typically was started in tension (positive displacement) and two cycles were run for each  

 

displacement until failure. 

 

  

3.2. Phenomena Observed in the Tests 

                                                     

 During the tests, BRBs deformed in a number of ways. Some BRBs had strong- 

 

axis buckling of the core, such as BRBs in tests 1 and 5; some BRBs had weak-axis  

 

buckling of the core, such as the BRB in test 3; out-of-plane buckling of the gusset plate  

 

was also observed once in test 5; fracture of the connection plate was also observed in  

 

test 6, as well as bulging of the casing in test 1. These phenomena are described in Table.  

 

3.3. Figure 3.9 shows the major deformations of the BRBs after the tests.   

 

 To fully understand how the BRB works, further research was performed 

 

regarding core plate buckling (strong axis or weak axis), gusset plate buckling, and  

 

casing bulging. In addition, finite element analysis will be used to model the  

 

hysteretic performance of BRBs in the tests.  

 

 

3.3. Evaluation of the BRB Performance 

                   

AISC-341 (2010) Section K4.3 specifies the acceptance requirements for BRB  

 

performance, including stability of the hysteretic loops; the compression strength  

 

adjustment factor, β; the strain hardening adjustment factor, ω; the cumulative inelastic  

 

deformation, η; and the cumulative energy dissipation, E. The calculations in this section  

 

are based on the relative displacement at the two ends of the BRB, measured using linear  

 



17 
 

 

variable displacement transducers (LVDTs) and the force from the actuator load cell.      

 

 

3.3.1. Hysteretic Behavior 

 

Hysteresis curves are conventionally used to demonstrate whether the BRB is  

 

stable under cyclic loading. Figure 3.10 shows the hysteresis loops for the nine  

 

specimens, which are all stable up to a displacement corresponding to 2% of the story  

 

drift without fracture, and therefore meet AISC-341 (2010) requirements. The strain in  

 

the core plates, which is the ratio of the maximum displacement over their length, ranged  

 

from 2.89% to 4.16%, which is greater than the yielding strain of the steel. The strains  

 

achieved in the core plates for each BRB specimen are listed in Tables 3.4 through 3.12.  

 

It can be seen from the hysteretic loops that BRBs in tests 1, 2, 3, 7, and 9 failed in  

 

tension and BRBs in tests 4, 5, 6, and 8 failed in compression. Combining the hysteretic  

 

behavior with the phenomena observed in Section 3.2, it can be seen that if the force  

 

declines in tension and the BRB fails in tension (first quadrant in the hysteretic loops),  

 

the BRB usually fails due to a fractured steel core. If the force decreases or drops  

 

significantly in compression (fourth quadrant in the hysteretic loops), the core  

 

experiences buckling.  

 

 

3.3.2. Compression Strength Adjustment Factor, β 

 

Factor β is calculated as the ratio of maximum compressive force to maximum  

 

tensile force of the specimen measured in the same loading cycle from the qualification  

 

tests specified in AISC-341 (2010) seismic provision Section K3.4c for the expected  

 

deformation. When the building with BRBs is under earthquake or wind excitation, the  

 

BRBs will go through a combination of tension and compression loading pattern.  
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Generally, concrete-filled BRBs have a higher compressive capacity than tensile capacity  

 

due to the friction between the concrete and the core and the confinement from the  

 

concrete after the core deforms. Therefore, AISC-341 (2010) requires factor β to be  

 

greater than 1.0 but smaller than 1.3. The definition of factor β is expressed in the Eq.  

 

3.1. 

  

                                                      1.0 < 𝛽 =
𝑃𝑚𝑎𝑥

𝑇𝑚𝑎𝑥
< 1.3                  (3.1) 

 

where β is the compression strength adjustment factor, 𝑃𝑚𝑎𝑥 is the maximum  

 

compressive force, and 𝑇𝑚𝑎𝑥 is the maximum tensile force in the corresponding loading  

 

cycle.  

  

Since the test typically starts with tension, the first tension cycle in each step has  

 

an overall displacement that is not equal to the next compression cycle. For this reason,  

 

the first cycle values of 𝛽 are not calculated. 

 

From Tables 3.4 to 3.12, it can be seen that the values for factor 𝛽 vary from 0.92  

 

to 1.28. All are below 1.3, which meets the AISC-341 (2010) requirements. Test 6 has a  

 

couple of 𝛽s smaller than 1.0 in the beginning of the test because the connection between  

 

the bottom gusset plate and the ground was loose.  

 

 

3.3.3. Strain Hardening Adjustment Factor, ω 

 

 Factor ω is the ratio of the maximum tension force measured from the  

 

qualification tests specified in section K3.4c to the measured yield force, RyPysc, of the  

 

specimen. The definition of factor ω is expressed in equation 3.2. Strain hardening is the  

 

strengthening of a metal by plastic deformation, which means that the tension in the  

 

plastic zone is larger than the yield strength of the material.  Therefore, ω should be  

 

larger than 1.0.         



19 
 

 

                                                         ω =
𝑇𝑚𝑎𝑥

𝑅𝑦𝑃𝑦𝑠𝑐
≥ 1.0                                       (3.2) 

 

where 𝑇𝑚𝑎𝑥 is the maximum tensile force, 𝑅𝑦 is the ratio of the expected yield stress to  

 

the specified minimum yield stress Fy, and 𝑃𝑦𝑠𝑐   is the axial yield strength of the steel  

 

core. 𝑅𝑦 need not be applied if  𝑃𝑦𝑠𝑐 is established using yield stress determined from a  

 

coupon test, which is the case for all of these tests.  

 

 Strain hardening happens after the material yields. The displacement applied on  

 

the brace in the first loading step is the yield displacement of the brace. From Tables. 3.4  

 

to 3.12, it can be seen that most BRBs started strain hardening after the first loading step  

 

and all BRBs eventually had strain hardening in the later loading steps. The maximum  

 

value of ω ranged from 1.42 to 1.67. This range is wide because the cross-sectional areas  

 

of core are not the same.  

 

 

3.3.4. Cumulative Inelastic Deformation, η 

 

 The inelastic deformation 𝜇𝑖 is the permanent or plastic portion of the axial  

 

displacement of a buckling-restrained brace, divided by the length of the yielding portion  

 

of the brace. This term shows how stretchable the brace is. For each loading cycle, there  

 

are four plastic deformations: the loading path from zero force location to maximum  

 

displacement in tension, the loading path from maximum displacement in tension to zero  

 

load location, the loading path from the zero load location to the maximum displacement  

 

in compression, and the loading path from maximum displacement to the zero load  

 

location. Therefore, the inelastic deformation for each cycle, 𝜇𝑖, can be expressed as  

 

                                   𝜇𝑖 =
2(∆𝑚𝑎𝑥−𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + ∆𝑚𝑎𝑥−𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

∆𝑏𝑦
− 4                                   (3.3) 

 

where 𝜇𝑖 is the inelastic deformation for each cycle, ∆𝑚𝑎𝑥−𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the maximum  
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displacement of the brace in compression,  ∆𝑚𝑎𝑥−𝑡𝑒𝑛𝑠𝑖𝑜𝑛 is the maximum displacement of  

 

the brace in tension, and ∆𝑏𝑦 is the yield displacement of the brace.  

 

  AISC 341-10 Section K3.3 requires that cumulative inelastic axial ductility  

 

capacity is no less than 200 times the yield displacement. This means that for a BRB to  

 

qualify, the plastic deformation created by the end of the test must be at least 200 times  

 

the elastic deformation.  

 

 The cumulative inelastic deformation is obtained from the Eq. (3.4):   

 

                                                                𝜂 = ∑ 𝜇𝑖
𝑛
𝑖=1                                                      (3.4) 

 

where 𝜂 is the cumulative inelastic deformation, and i is the loading cycle number. 

 

From Tables 3.4 to 3.12, it can be seen that the minimum cumulative inelastic  

 

deformation is 391 for test 8 with the small cross-sectional area of a single core plate, and  

 

the maximum is 617 for test 1 with the large cross-sectional area of a dual core. The nine  

 

specimens exceed the AISC 341 cumulative inelastic deformation requirement of 200  

 

times the yield displacement by a factor of 2.0 to 3.1.  

 

                                  

3.3.5. Cumulative Energy Dissipation, E 

 

During an earthquake, buildings shake and deform. To prevent the buildings with  

 

BRBs installed from experiencing major cracking and failure, energy must be dissipated  

 

by the BRBs. Cumulative energy dissipation is the term which measures how much  

 

energy can be dissipated by a BRB.  

 

The energy dissipation for each loading increment can be calculated from Eq. 

(3.5):  

 

                                                        𝐸𝑖+1 =
(𝑃𝑗+1+𝑃𝑗)(𝑥𝑗+1−𝑥𝑗)

2
                                        (3.5)             

 

where 𝑃𝑗 and 𝑃𝑗+1 are the forces at the loading time of 𝑗 and 𝑗 + 1, respectively; 𝑥𝑗 and  
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𝑥𝑗+1 are the displacement at the loading time of 𝑗 and 𝑗 + 1, respectively. 

 

The cumulative energy dissipation is a summation of the energy for each loading  

 

step, shown in Eq. (3.6): 

 

                                                         𝐸 = ∑ 𝐸𝑗+1
𝑛−1
𝑗=1                                                       (3.6)      

 

where 𝐸𝑗+1 is the energy dissipation for each loading step, 𝐸 is the cumulative energy  

 

dissipation, and 𝑗 is the loading time. 

 

Cumulative energy dissipation for each test is calculated in Tables 3.4 to 3.12 and  

 

plotted in Figure 3.11. Cumulative hysteretic energy dissipation for specimens 1 through  

 

5 and specimen 9 is higher than that for specimens 6 through 8. BRBs in tests 1 through 5  

 

and 9 have the same cross-sectional casing dimensions of 12 in. × 12 in. × 0.25 in. and a  

 

steel core cross-sectional area equal to or larger than 10 in.2, as shown in Table 3.1. BRBs  

 

in tests 6 to 8 have the same cross-sectional casing dimensions of 10 in. × 10 in. × 0.25  

 

in. and a steel core cross-sectional area of 7.75 in2; thus, the larger the cross-sectional  

 

area of the core the higher is the hysteretic energy dissipated. 

 

Figure 3.12 shows the cumulative energy dissipation per unit cross-sectional area  

 

of the core plates. Starting at the top of the figure, the cross-sectional area of the core  

 

plates increases from 7.75 in.2 to 18.5 in.2; the smaller the core cross-sectional area, the  

 

more efficient the BRB is regarding cumulative energy dissipation per unit cross- 

 

sectional area of the core plates. For unit cross-sectional area of the core plates, the larger  

 

the perimeter of the core plate, the greater the friction force and the greater the  

 

compressive force needed to move the same amount of displacement. In other words, the  

 

larger the ratio of the perimeter to the cross-sectional area of the core, the greater the  

 

compression needed for BRB to move the same distance. The greater compression force  
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in the same distance results in the greater cumulative energy dissipation. From Table 3.1,  

 

it can be seen that the BRBs with the smallest cross-sectional area have larger ratio of  

 

perimeter to the cross-sectional area. Therefore, the BRB with a small cross-sectional  

 

area of core is more efficient.    

 

 

3.3.6. Comparison with Current Generation BRB 

 

Raddon et al. (Raddon, B., Pantelides, C., and Reaveley, L.) reported test results  

 

on a current-generation BRB with pinned connections; it had a cross-sectional area of 19  

 

in.2 using three steel core plates. The BRBs in tests 1, 2 and 4 of the present investigation  

 

have a cross-sectional area of 18.5 in.2 which is similar to the BRB tested by Raddon et  

 

al. (Raddon, B., Pantelides, C., and Reaveley, L.); this BRB was tested as an element with  

 

only uniaxial load and pinned connections to the gusset plates. In test 1, the new- 

 

generation BRB was tested as an element under uniaxial load only and was bolted. BRBs  

 

in tests 2 and 4 were subassemblage tests with both uniaxial load and initial moment, as  

 

described in Figure 3.7. The BRB in test 2 was bolted while the BRB in test 4 was  

 

welded. The cumulative hysteretic energy dissipation for these four tests is plotted in  

 

Figure 3.13; the new-generation BRB in test 1 dissipated a similar amount of hysteretic  

 

energy as the conventional BRB. Furthermore, comparing new-generation BRBs in test 1  

 

to tests 2 and 4 shows that the BRB in the element test dissipates more energy than the  

 

subassemblage tests, which shows that subassemblage tests are more severe than element  

 

tests because of the initial moment in subassemblage tests. Moreover, even though BRBs  

 

in tests 2 and 4 were tested with different connections to the gusset plates, the cumulative  

 

hysteretic energy dissipation was similar.  
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Table 3.1  

Material properties and geometry of the BRB specimens 

 

Test 

# 

Wco 

in.  

Tco 

in. 

Core 

type 

Aco 

in.2 

The ratio 

of 

perimeter 

to area of  

core/, in. 

Lc-co 

in. 

Ltot 

in. 

Casing 

in.  

1 9.25 1 Dual 18.5 1.2 123 219 12x12x0.25 

2 9.25 1 Dual 18.5 1.2 123 219 12x12x0.25 

3 6.25 1 Dual 12.5 1.3 135 209 12x12x0.25 

4 9.25 1 Dual 18.5 1.2 123 219 12x12x0.25 

5 10 1 Single 10 2.2 153 219 12x12x0.25 

6 7.75 1 Single 7.75 2.3 157 219 10x10x0.25 

7 7.75 1 Single 7.75 2.3 157 219 10x10x0.25 

8 7.75 1 Single 7.75 2.3 157 219 10x10x0.25 

9 10 1 Single 10 2.2 153 219 12x12x0.25 

 

 

Table 3.2  

End connection and test methods for the specimens 

 

Test 

# 

Shape of 

BRB 

casing 

End  

Connection 

Test method 

1 Square Bolted element 

2 Square Bolted subassemblage 

3 Square Bolted element 

4 Square Welded subassemblage 

5 Square Welded subassemblage 

6 Square Bolted subassemblage 

7 Square Bolted subassemblage 

8 Square Bolted subassemblage 

9 Square Welded subassemblage 
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Table 3.3  

Test phenomena and failure mode 

 

Test # Specimen 

# 

Test phenomena Buckling direction 

1 PB750b1 Fracture occurred on both ends of 

core plates; Casing bulged at mid-

height. 

Strong-axis 

buckling 

2 PB750b2 Fracture occurred on core plates at 

mid-height.  

- 

3 PB500b Buckling occurred on core plates Weak-axis buckling 

4 PC750w1 Out-of-plane buckling occurred on 

the top gusset plate 

- 

5 PW400b1 Core plate buckled Strong-axis 

buckling 

6 PB315b1 Facture occurred on the bottom 

connection plate 

Weak and strong-

axis buckling 

7 PB315b2 BRB Failed in tension. Core plate 

broke at middle-height. Slightly 

weak axis buckling occurred.   

Weak-axis buckling 

8 PB315b3 Casing bulged at the top end. There 

was big weak axis-buckling 

happened on the core plate at the 

top. Strong-axis buckling occurred 

on the rest part of the BRB. 

Strong and weak-

axis buckling  

9 PW400b2 Casing bulged on the bottom nearby 

where the connection plates stopped 

Weak-axis buckling 
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Table 3.4 

Parameters calculated for test 1 

 

Step Cycles 

Tension, maximum Compression, maximum 
Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 671  0.22  0.18  -789  -0.24  -0.19  78  78   0.89  -1.04  0.34  0.34  

  2 703 0.21  0.17  -727  -0.22  -0.18  41  120  -1.03  0.93  -0.96  0.03  0.37  

2 1 800  0.65  0.53  -788  -0.64  -0.52  1182  1301   1.06  -1.04  8.35  8.72  

  2 752 0.65  0.53  -778  -0.64  -0.52  1160  2461  -1.03  1.00  -1.03  8.34  17.07  

3 1 802  1.31  1.07  -915  -1.30  -1.06  3167  5627   1.06  -1.21  20.92  37.98  

  2 883  1.31  1.07  -937  -1.30  -1.06  3296  8923  -1.06  1.17  -1.24  20.89  58.87  

4 1 931  1.98  1.61  -1023  -1.97  -1.60  5778  14701   1.23  -1.36  33.61  92.49  

  2 970  1.98  1.61  -1031  -1.97  -1.60  5912  20613  -1.06  1.28  -1.37  33.59  126.08  

5 1 1003  2.63  2.14  -1107  -2.63  -2.14  8611  29224   1.33  -1.47  46.11  172.19  

  2 1042  2.64  2.14  -1116  -2.62  -2.13  8793  38018  -1.07  1.38  -1.48  46.10  218.29  

6 1 1074  3.52  2.86  -1207  -3.51  -2.86  12805  50823   1.42  -1.60  63.02  281.30  

  2 1119  3.52  2.87  -1218  -3.51  -2.86  13118  63941  -1.09  1.48  -1.61  63.01  344.31  

7 1 1144  4.43  3.60  -1263  -4.42  -3.59  17286  81226   1.52  -1.67  80.29  424.60  

  2 1177  4.43  3.60  -1243  -4.42  -3.59  17104  98330  -1.06  1.56  -1.65  80.28  504.88  

8 1 1186  5.14  4.18  -1275  -5.12  -4.17  13895  112226   1.57  -1.69  93.71  598.60  

  2 1102  2.38  1.93        1793  114019        18.63  617.23  
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Table 3.5 

Parameters calculated for test 2 

 

Step  Cycle 

Tension, 

maximum 

Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % F, kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 630  0.27  0.22  -752  -0.30  -0.25  182  182  0.83  -1.00  1.79  1.79  

  2 702  0.27  0.22  -712  -0.29  -0.24  143  325  -1.01  0.93  -0.94  1.72  3.51  

2 1 750  0.65  0.53  -727  -0.65  -0.53  1052  1376   0.99  -0.96  9.16  12.67  

  2 718  0.65  0.53  -728  -0.65  -0.53  1045  2422  -1.01  0.95  -0.96  9.16  21.83  

3 1 762  1.31  1.07  -857  -1.31  -1.06  2935  5357   1.01  -1.13  22.56  44.39  

  2 843  1.31  1.07  -883  -1.30  -1.06  3069  8426  -1.05  1.12  -1.17  22.56  66.95  

4 1 887  1.98  1.61  -964  -1.97  -1.60  5426  13853   1.18  -1.28  36.10  103.05  

  2 926  1.98  1.61  -981  -1.97  -1.60  5567  19419  -1.06  1.23  -1.30  36.09  139.14  

5 1 958  2.63  2.14  -1052  -2.63  -2.14  8154  27573   1.27  -1.39  49.42  188.56  

  2 994  2.64  2.14  -1072  -2.63  -2.14  8357  35930  -1.08  1.32  -1.42  49.42  237.98  

6 1 1028  3.52  2.86  -1158  -3.51  -2.86  12242  48172   1.36  -1.53  67.44  305.42  

  2 1071  3.52  2.86  -1188  -3.51  -2.86  12623  60795  -1.11  1.42  -1.57  67.44  372.86  

7 1 1105  4.43  3.60  -1277  -4.42  -3.59  17087  77882   1.46  -1.69  85.85  458.71  

  2 1126  3.04  2.47        3217  81099        26.82  485.53  
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Table 3.6 

Parameters calculated for test 3 

 

Step  Cycle  

Tension, 

maximum 

Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % F, kips 

D, 

in. ε, % Per cycle Cumulative 

1 1 425  0.27  0.20  -511  -0.30  -0.22  76  76   0.83  -1.00  1.49  1.49  

  2 483 0.28  0.21  -482  -0.29  -0.21  69  145  -1.00  0.95  -0.94  1.49  2.98  

2 1 517  0.65  0.48  -501  -0.65  -0.48  669  814   1.01  -0.98  8.52  11.49  

  2 485 0.65  0.48  -493  -0.65  -0.48  673  1487  -1.01  0.95  -0.97  8.49  19.98  

3 1 504  1.31  0.97  -584  -1.31  -0.97  1934  3421   0.99  -1.14  21.19  41.17  

  2 565  1.31  0.97  -598  -1.31  -0.97  2019  5439  -1.06  1.11  -1.17  21.19  62.36  

4 1 597  1.98  1.47  -664  -1.97  -1.46  3620  9060   1.17  -1.30  33.99  96.35  

  2 624  1.98  1.47  -670  -1.97  -1.46  3715  12775  -1.07  1.22  -1.31  33.99  130.34  

5 1 645  2.63  1.95  -722  -2.63  -1.95  5477  18252   1.26  -1.42  46.62  176.96  

  2 670  2.64  1.95  -731 -2.63  -1.95  5621  23873  -1.09  1.31  -1.43  46.62  223.58  

6 1 691  3.52  2.61  -792  -3.52  -2.60  8250  32123   1.35  -1.55  63.66  287.24  

  2 722  3.52  2.61  -805  -3.52  -2.60  8496  40619  -1.11  1.42  -1.58  63.67  350.90  

7 1 743  4.43  3.28  -871  -4.42  -3.28  11493  52112   1.46  -1.71  81.08  431.98  

  2 770  4.43  3.28        5420  57532        38.56  470.55  
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Table 3.7 

Parameters calculated for test 4 

 

Step  Cycle  

Tension, maximum 
Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips 

D, 

 in. ε, % 

Per 

cycle Cumulative 

1 1 744  0.24  0.19  -748 -0.25  -0.20  75  75  0.98  -0.99  0.59  0.59  

  2 727  0.23  0.18  -717 -0.24  -0.20  42  117  -0.99  0.96  -0.95  0.44  1.02  

2 1 847  0.73  0.60  -852  -0.72  -0.59  1183  1299   1.12  -1.13  9.88  10.90  

  2 792 0.73  0.60  -834  -0.72  -0.59  1391  2690  -1.05  1.05  -1.10  9.87  20.77  

3 1 855  1.48  1.21  -995  -1.47  -1.20  3264  5954   1.13  -1.32  24.17  44.94  

  2 928  1.48  1.21  -1014  -1.47  -1.20  3940  9894 -1.09  1.23  -1.34  24.15  69.09  

4 1 975  2.23  1.81  -1115  -2.22  -1.81  6211  16105   1.29  -1.47  38.40  107.49  

  2 1012  2.23  1.81  -1129  -2.22  -1.80  7037  23142 -1.12  1.34  -1.49  38.38  145.87  

5 1 1042  2.98  2.42  -1220  -2.97  -2.41  9564  32706   1.38  -1.61  52.61  198.48  

  2 1077 2.98  2.42  -1239  -2.97  -2.41  10472  43177 -1.15  1.42  -1.64  52.62  251.10  

6 1 1107  3.72  3.03  -1331 -3.71  -3.02  13256  56433   1.46  -1.76  66.83  317.93  

  2 1128  3.72  3.03  -1358  -3.72  -3.02  14172  70605 -1.20  1.49  -1.79  66.87  384.80  

7 1 1151  4.48  3.64  -1245  -1.48  -1.20  13118  83723   1.52  -1.65  52.76  437.56  
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Table 3.8 

Parameters calculated for test 5 

 

Step  Cycle  

Tension, maximum 
Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 476  0.33  0.21  -513  -0.34  -0.22  229  229  1.17  -1.26  2.34  2.34  

  2 453  0.34  0.22  -498  -0.34  -0.22  239  468  -1.10  1.11  -1.22  2.42  4.76  

2 1 465  0.81  0.53  -514  -0.81  -0.53  1061  1528   1.14  -1.26  11.46  16.22  

  2 459  0.81  0.53  -514  -0.81  -0.53  1032  2561  -1.12  1.12  -1.26  11.44  27.66  

3 1 491  1.63  1.07  -605  -1.63  -1.07  1032  3593   1.20  -1.48  27.10  54.76  

  2 536  1.63  1.07  -603  -1.63  -1.06  2676  6269  -1.13  1.31  -1.48  27.08  81.84  

4 1 556  2.45  1.60  -669  -2.45  -1.60  2746  9015   1.36  -1.64  42.68  124.52  

  2 561  2.46  1.60  -669  -2.45  -1.60  4667  13682  -1.19  1.38  -1.64  42.68  167.20  

5 1 567  3.28  2.14  -735  -3.27  -2.14  4710  18392   1.39  -1.80  58.41  225.61  

  2 594  3.28  2.14  -744  -3.27  -2.14  6785  25177  -1.25  1.46  -1.82  58.42  284.03  

6 1 611  4.10  2.68  -795  -4.09  -2.67  6944  32121   1.50  -1.95  73.95  357.98  

  2 641  4.10  2.68  -802  -4.09  -2.67  9193  41314  -1.25  1.57  -1.96  73.95  431.93  

7 1 656  4.91  3.21  -862  -4.90  -3.21  11588  52901   1.61  -2.11  89.48  521.41  

 

 

 

 

 

  



 

 

 

 

3
0
 

  

 

Table 3.9 

Parameters calculated for test 6 

 

Step  Cycle  

Tension, maximum 
Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 370  0.33  0.21  -339  -0.34  -0.22  160  160   1.17  -1.07  1.46  1.46  

  2 348  0.34  0.22  -320  -0.34  -0.21  166  326  -0.92  1.10  -1.01  1.51  2.97  

2 1 357  0.86  0.55  -345  -0.85  -0.54  798  1125   1.13  -1.09  9.96  12.93  

  2 360  0.86  0.55  -336  -0.85  -0.54  775  1900  -0.94  1.14  -1.06  9.95  22.88  

3 1 383  1.72  1.10  -401  -1.71  -1.09  1993  3893   1.21  -1.27  24.00  46.88  

  2 409  1.72  1.09  -411  -1.71  -1.09  2069  5962  -1.00  1.29  -1.30  23.99  70.87  

4 1 427  2.59  1.65  -459  -2.58  -1.64  3535  9497   1.35  -1.45  38.17  109.05  

  2 440  2.59  1.65  -474  -2.58  -1.64  3628  13124  -1.08  1.39  -1.50  38.17  147.21  

5 1 454  3.44  2.19  -532  -3.44  -2.19  5337  18462   1.44  -1.68  52.18  199.39  

  2 472  3.44  2.19  -558  -3.44  -2.19  5571  24033  -1.18  1.49  -1.77  52.14  251.53  

6 1 492  4.53  2.88  -643  -4.52  -2.88  8209  32242   1.55  -2.03  69.90  321.43  

  2 525  4.53  2.89  -627  -4.52  -2.88  8376  40617  -1.19  1.66  -1.98  69.90  391.34  

7 1 527  5.18  3.30  -657  -5.17  -3.29  8946  49564   1.67  -2.08  80.44  471.78  
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Table 3.10 

Parameters calculated for test 7 

 

Step  Cycle  

Tension, 

maximum 

Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 217  0.29  0.18  -333  -0.37  -0.24  129  129   0.69  -1.05  1.38  1.38  

  2 253  0.31  0.20  -325  -0.37  -0.23  139  268  -1.28  0.80  -1.03  1.51  2.88  

2 1 303  0.83  0.53  -355  -0.88  -0.56  708  976   0.96  -1.12  9.96  12.84  

  2 326  0.83  0.53  -359  -0.88  -0.56  733  1709  -1.10  1.03  -1.14  9.96  22.79  

3 1 353  1.69  1.08  -404  -1.74  -1.11  1939  3647   1.12  -1.28  24.02  46.81  

  2 378  1.69  1.08  -410  -1.74  -1.11  2008  5655  -1.08  1.20  -1.30  24.01  70.83  

4 1 396  2.56  1.63  -452  -2.61  -1.66  3422  9077   1.25  -1.43  38.18  109.01  

  2 413  2.56  1.63  -466  -2.61  -1.66  3539  12616  -1.13  1.31  -1.47  38.19  147.19  

5 1 430  3.41  2.17  -508  -3.47  -2.21  5196  17812   1.36  -1.61  52.16  199.35  

  2 450  3.41  2.17  -520  -3.47  -2.21  5363  23175  -1.15  1.42  -1.64  52.17  251.52  

6 1 465  4.50  2.87  -564  -4.55  -2.90  7703  30878   1.47  -1.78  69.89  321.41  

  2 486  4.50  2.87  -604  -4.55  -2.90  8101  38979  -1.24  1.54  -1.91  69.91  391.32  

7 1 508  3.46  2.20        1675  40654   1.61   24.21  415.53 
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Table 3.11 

Parameters calculated for test 8 

 

Step  Cycle  

Tension, maximum 
Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 301  0.33  0.21  -327  -0.34  -0.22  137  137  0.95  -1.04  1.47  1.47  

  2 291  0.34  0.22  -320  -0.34  -0.21  146  282  -1.10  0.92  -1.01  1.51  2.98  

2 1 296  0.86  0.55  -324  -0.85  -0.54  713  996   0.94  -1.02  9.96  12.94  

  2 290  0.86  0.55  -331  -0.85  -0.54  696  1692  -1.14  0.92  -1.05  9.96  22.90  

3 1 323  1.72  1.09  -386  -1.71  -1.09  1821  3513   1.02  -1.22  24.00  46.90  

  2 350  1.72  1.09  -401  -1.71  -1.09  1912  5425  -1.14  1.11  -1.27  24.01  70.91  

4 1 366  2.59  1.65  -435  -2.58  -1.64  3270  8695   1.16  -1.38  38.16  109.07  

  2 383  2.59  1.65  -449  -2.58  -1.64  3373  12068  -1.17  1.21  -1.42  38.18  147.25  

5 1 396  3.44  2.19  -485  -3.44  -2.19  4902  16970   1.25  -1.53  52.16  199.41  

  2 413  3.44  2.19  -509  -3.44  -2.19  5089  22059  -1.23  1.31  -1.61  52.16  251.57  

6 1 428  4.53  2.88  -5608  -4.53  -2.88  7330  29388   1.35  -1.77  69.91  321.48  

  2 448  4.53  2.89  -545  -4.52  -2.88  5741  35130  -1.22  1.42  -1.72  69.92  391.40 
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Table 3.12 

Parameters calculated for test 9 

 

Step  Cycle  

Tension, 

maximum 

Compression, 

maximum 

Energy Dissipation, 

kip-in 
β ω βω μ η 

F, 

kips 

D, 

in. ε, % 

F, 

kips D, in. ε, % 

Per 

cycle Cumulative 

1 1 439  0.33  0.22  -480 -0.34  -0.22  243  243   1.08  -1.18  2.41  2.41  

  2 427  0.34  0.22  -450  -0.34  -0.22  254  497  -1.05  1.05  -1.10  2.48  4.89  

2 1 424  0.82  0.53  -479  -0.81  -0.53  998  1496   1.04  -1.18  11.50  16.39  

  2 454  0.82  0.53  -482  -0.81  -0.53  1007  2503  -1.06  1.11  -1.18  11.49  27.88  

3 1 450  1.64  1.07  -517  -1.63  -1.07  2442  4945   1.10  -1.27  27.13  55.01  

  2 492  1.64  1.07  -528  -1.63  -1.07  2501  7446  -1.07  1.21  -1.29  27.10  82.11  

4 1 511  2.45  1.60  -570  -2.45  -1.60  4181  11627   1.25  -1.40  42.70  124.80  

  2 527  2.45  1.60  -589  -2.45  -1.60  4268  15895  -1.12  1.29  -1.44  42.68  167.49  

5 1 545  3.28  2.14  -641  -3.27  -2.14  6211  22107   1.34  -1.57  58.42  225.91  

  2 565  3.28  2.14  -662  -3.27  -2.14  6422  28529  -1.17  1.38  -1.62  58.43  284.34  

6 1 581  4.10  2.68  -723  -4.09  -2.67  8633  37162   1.42  -1.77  73.98  358.32  

  2 604  4.10  2.68  -771  -4.09  -2.67  8967  46129  -1.28  1.48  -1.89  73.98  432.30  

7 1 628  4.91  3.21  -856  -4.91  -3.21  11576  57705   1.54  -2.10  89.51  521.81  

  2 656  4.91  3.21  -613  -4.90  -3.20  8020  65725  -0.94  1.61  -1.50  89.45  611.26  
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Figure 3.1 Core plates and connection plates in old BRBs 

 

 

 
 

Figure 3.2 Connection plates and the core plates for new BRBs 

 

 

 
 

Figure 3.3 Parts of the BRB 
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            (a)                             (b)                                                                (c) 

 

Figure 3.4 Test frame, (a) Side view, (b) Front view of frame and a BRB 

and (c) Photo of testing frame 

 

 

 
 

Figure 3.5 Connection details at the bottom of the BRB 

 

 

 
 

Figure 3.6 Buckling-restrained braced frame 
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                      (a)      (b)      (c)               (d)                 (e) 

 

Figure 3.7 Procedure to assemble the BRB to the gusset plate, (a) The BRB is set up 

vertically, (b) Bolts are inserted into bolt holes, (c) Bottom gusset plate is  

moved to 3 in. off the vertical axis, (d) Bolts are tightened, then  

bottom gusset plate is moved back to vertical axis 

 and (e) Moments are created  

on both ends of BRB  

 

 

 
 

Figure 3.8 Cyclic loading protocol for the tests (𝛥𝑏𝑚 is the BRB  

displacement at 1% inter-story drift) 
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                                  (a)                         (b)                      (c)                          (d)  

 

                 
                           

                          (e)                   (f)                (g)                 (h)                          (i)  

 

Figure 3.9 Phenomena observed in the tests: (a) Test 1: strong-axis buckling, (b) Test 2: 

fracture on the core, (c) Test 3: weak-axis buckling, (d) Test 4: out-of-plane  

buckling on the top gusset plate, (e) Test 5: strong-axis buckling  

(f) Test 6: combination of strong- and weak-axis buckling,  

(g) Test 7: weak-axis buckling, (h) Test 8: combination  

of strong- and weak-axis buckling and 

(i)Test 9: weak-axis buckling 
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                     (a)                                            (b)                                            (c)        

                                               

 
 

                      (d)                                           (e)                                           (f)  

 

 
                  

                     (g)                                            (h)                                            (i)  

 

Figure 3.10 Hysteretic loops for all the tests (the moment when the BRB started to fail 

was circled in the figures): (a) Test 1, (b) Test 2, (c) Test 3, (d) Test 4, 

(e) Test 5, (f) Test 6, (g) Test 7, (h) Test 8 and (i) Test 9 
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Figure 3.11 Cumulative dissipated energy for nine BRB tests 

 

 

 
 

Figure 3.12 Cumulative energy dissipation for unit cross-sectional area of core plates 
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Figure 3.13 Comparison of cumulative energy dissipation for present tests and current 

generation BRB tested by Raddon et al. (Raddon, B., Pantelides, C., and Reaveley, L.) 
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CHAPTER 4 

 

 

BUCKLING FORCE ON THE CORE FOR 

  

STRONG-AXIS BUCKLING 

 

 

An equation for the buckling force on the single or dual core plates in the strong  

 

axis will be derived in this portion of the investigation, as well as the contact force  

 

between the core plate and the restrainer (concrete and steel casing). The axial  

 

compressive buckling force from the closed-form equation derivation will be verified  

 

with finite element simulation results, and the backbone curve obtained from the tests. 

 

 

4.1 Core Buckling Force Derivation 

 

 According to the phenomena observed in test 1, shown in Figure 3.9, the core   

 

plate had a series of very small waves before the large buckling happened on it. The  

 

buckling force which caused the small buckling waves will be derived in this section.  

 

 The debonding layers between core plates and the surrounding concrete are made  

 

of a soft material, compared to the concrete and steel core; this allows the core plate to  

 

deform in the transverse direction when it is subjected to axial compression, without  

 

cracking or crushing the concrete. Therefore, the core plate can buckle about either the  

 

core plate weak axis or strong axis subjected to the axial compression. The contact force,  

 

between the core plates and concrete, is developed when the core plate pushes into the  

 

debonding layer. The number of buckling waves will increase when the axial compressive  
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force increases. The number of waves can be determined by using Eq. (2.4) obtained by  

 

Wu et al. (2014).  

 

 

4.1.1 Assumptions of Equation Derivation 

  

 In order to derive the equation for the axial compressive buckling force on the  

 

core plate, the following assumptions will be made based on the real restraining  

 

conditions: 

 

      (1) Bending deformations of the concrete and casing (restrainer) are ignored. Two  

  

 kinds of cross-section of steel casing were used for the experiment: 10 in. × 10 in.  

 

 × 0.25 in. and 12 in. × 12 in. × 0.25 in. The cross-sectional dimension of the core  

 

 plates used in the specimens are 9.25 in. × 2 in., 6.25 in. × 2 in., 10 in. × 1 in.,  

 

 and 7.75 in. × 1 in. For a new BRB cross-section, the cross-section of the  

 

 restrainer is the cross-section of BRB when the cross-section of the core plates is  

 

 subtracted. It is obvious that the restrainer has a larger cross-sectional area  

 

 compared to the core plates, and is stiffer; compared to the restrainer, the core  

 

 plates are very flexible. Therefore, the deformation on the restrainer caused from  

 

 the contact force is very small and can be ignored. 

       

      (2) The rotational angle on both ends of core plate about weak axis is zero. For  

 

new-generation BRBs, the connection plates significantly increase the stiffness of  

 

BRB at ends of core plate to make the end section much stiffer than the middle  

 

section of the core plates. Therefore, even though core plates deform in the middle  

 

section, the ends of the core plates had very small rotation according to  

 

phenomena observed from tests, which can be ignored.  

 

      (3) Both ends of the core plates always stay on the same side of the restrainer  
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when the core plates buckle in the same direction. The core plates are originally  

 

parallel to the restrainer before loading; when loading starts, the core plates  

 

deform and even reach the restrainer under compressive load. Once the contact  

 

force between the core plates and the restrainer occurs, it pushes both ends of the  

 

core plates to approach the same side of the restrainer.  

 

      (4) In the case of dual core, each plate shares the axial load equally. When the BRB  

 

 has two core plates, the core plates always have the same dimension and the same  

 

 material property. Therefore, those two plates share the axial load equally.  

 

      (5) In the case of dual core, two core plates do not move relative to each other. 

  

 According to the observation made in the experiments, dual core plates always 

 

deformed in the same direction, either buckling about the strong axis or the weak  

 

axis. The focus in this research is for the case in which the core plates do not  

 

move relative to each other.  

  

      (6) The section of the BRB which has a connection plate will not be considered. 

  

 The connection plate perpendicular to the core plates at the ends of the BRBs can  

 

significantly increase the BRB stiffness. However, in this section, the length of  

 

the BRBs considered will be only the part of the BRB between the connection  

 

plates; this is conservative. 

 

 

4.1.2 Determination of Reduced Modulus of Elasticity, 𝐸𝑟 

 

 Three theories are usually used for inelastic buckling: tangent-modulus theory,  

 

reduced modulus theory (Timoshenko et al. 1961), and Shanley’s theory (Shanley 1947).  

 

The tangent modulus theory tends to underestimate the strength of compression members,  

 

since it uses the tangent modulus once the stress on the concave side exceeds the  
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proportional limit, while the convex side is still below the elastic limit.   

  

The reduced modulus theory defines a reduced Young’s modulus, 𝐸𝑟. For a  

 

column with rectangular cross section, the reduced modulus is defined by Eq. (4.1). The  

 

reduced-modulus theory tends to overestimate the strength of the column, since it is  

 

based on stiffness reversal on the convex side of the column.  

 

                                                     𝐸𝑟 =
4𝐸𝐸𝑡

(√𝐸+√𝐸𝑡)2
                                                    (4.1)  

 

where 𝐸𝑟 is the reduced modulus of elasticity, E is the modulus of elasticity, and 𝐸𝑡 is  

 

the tangent modulus. 

 

 Both the tangent-modulus theory and the reduced-modulus theory oversimplify  

 

the inelastic buckling by using only one tangent modulus. In reality, the tangent modulus  

 

depends on the stress, which is a function of the bending moment that varies with the  

 

displacement. 

 

 Shanley (1947) believes that the critical load of inelastic buckling is a function of  

 

transverse displacement. According to Shanley’s theory, the critical load is located  

 

between the critical load predicted by the tangent-modulus theory (the lower bound) and  

 

the reduced-modulus theory (the upper bound).  

 

 To simplify the problem in this research, the reduced modulus theory is used. To  

 

compensate the overestimation given by the reduced modulus theory, tangent modulus  

 

equals 3% of Young’s modulus of elasticity.  

  

 Substituting the reduced modulus of elasticity, 𝐸𝑡, with 3% of Young’s modulus  

 

of elasticity, E, in Eq. (4.1), the relationship between 𝐸𝑟 and E can be described by Eq.  

 

(4.2) as 

 

                                          𝐸𝑟 = 
4×𝐸×0.03×𝐸

(√𝐸+√0.03𝐸)2
= 0.0872𝐸                          (4.2)  
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4.1.3 Equation Development for Axial Compressive 

Force and Contact Force 

 

 Both ends of the core plates are assumed to move towards the middle section of  

 

the BRB under the axial compressive force, 𝑃′, shown in Figure 4.1(a). As the  

 

compressive force increases, and when it reaches the critical force, 𝑃𝐸, the core plates  

 

buckle and the top surface of the core plates touches the top restrainer (barely touching,  

 

and contact force has not occurred yet) shown in Figure 4.1(b). The critical force, 𝑃𝐸, is  

 

defined by the Euler equation, Eq. (4.3). At this critical load, the point contact occurs  

 

between the core plates and the restrainer. Once the steel core plates yield, the reduced  

 

modulus will be used instead of the Young’s modulus of elasticity.   

 

    𝑃𝐸 =
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑐−𝑐𝑜
2                                                    (4.3) 

 

where 𝐸𝑟−𝑐𝑜 is the reduced modulus of elasticity of the core plates; Ico is the moment  

 

inertia of the core plates; 𝐿𝑐−𝑐𝑜 is the critical length of the core plate, which is the  

 

horizontal distance between the connection plates on each end.  

 

 As the axial compressive force keeps increasing beyond the critical load, the  

 

contact force, 𝐹𝐵, and frictional force, µ𝐹𝐵, begin to increase between the core plate and  

 

the restrainer. The frictional force resists the motion of the core plates so it is in a  

 

direction opposite to the direction of axial compressive force. The distribution of forces  

 

on the core plates at this moment is shown in Figure 4.1(c). 

 

 The force equilibrium diagram for the core plates is shown in Figure 4.2. When  

 

𝑥 ≤ 𝑙𝑠𝑘/2 (𝐿𝑠𝑘 is the wave length for strong-axis buckling), the moment equilibrium  

 

equation for the core plate is expressed in Eq. (4.4). Since the forces are symmetric with  

 

respect to the center of the wave, the moment equilibrium equation for the other half of  

 

the wave is the same as Eq. (4.4). This is the basic equation for the following axial  
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compressive force and contact force derivation:  

 

                                         (𝑃𝑘 − 𝜇𝐹𝐵𝑘)𝑦 − 𝐹𝐵𝑘𝑥 + 𝐸𝑟−𝑐𝑜𝐼𝑐𝑜
𝑑2𝑦

𝑑𝑥2
= 0     (4.4)   

 

where 𝑃𝑘 is the axial compressive force on the core plates after the core plates buckle, µ  

 

is the friction coefficient, 𝐸𝑟−𝑐𝑜 reduced modulus of the core plate, x is the horizontal  

 

distance, y is the vertical distance, 𝐹𝐵𝑘 is the contact force between the concrete and steel  

 

core plates, and 𝐼𝑐𝑜 is the moment of the inertia of the core plates. 

 

 As the increase of the axial compressive force after the first wave shows, the  

 

second wave will occur, then the third wave and so on. The axial compressive forces, 𝑃𝑘,  

 

and the contact forces, 𝐹𝐵𝑘, for one up to four waves on the core plate will be derived in  

 

the following section, as well as the general equations for the axial compressive force, 𝑃𝑘,   

 

and the contact force, 𝐹𝐵𝑘. 

 

 

4.1.3.1 Core Plates with One Wave 

 

  For small deformations, y, the bending moment at any point on the curve shown  

 

in Figure 4.3 can be expressed in Eq. (4.5). At the point of contraflexure  
𝑑2𝑦

𝑑𝑥2
= 0, so the  

 

moment at that point is zero. Therefore, the bending moment at the point 𝐴1 in Figure  

 

4.3, which is the point of contraflexure, can be expressed in Eq. (4.6). In this case, the  

 

buckling wave length, 𝐿𝑠1, equals the critical length of the core plate, 𝐿𝑐−𝑐𝑜, since only  

 

one wave occurs.  

 

                                                           𝑀 = 𝐸𝑟−𝑐𝑜𝐼𝑐𝑜
𝑑2𝑦

𝑑𝑥2
        (4.5) 

 

                                                𝑀𝐴1 = 𝑃1𝑒 − 𝜇𝐹𝐵1𝑒 − 𝐹𝐵1
𝐿𝑠1

4
                                        (4.6) 

 

where 𝐸𝑟−𝑐𝑜 is the reduced modulus of the core plates; 𝐼𝑐𝑜 is the moment of the inertia of  

 

the core plates; x and y are the horizontal and vertical distance from point 𝐴1 to the initial  
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point on the left end, respectively; 𝑀𝐴1 is the moment at point 𝐴1; 𝑃1 is the axial  

 

compressive force on the core plates when only one wave occurs; µ is the frictional  

 

coefficient between the concrete and the core plates; 𝐹𝐵1 is the contact force between the  

 

core plates and the concrete when only one wave occurs; 2𝑒 is the thickness of the  

 

deboning material or air gap between concrete and the core plates; and 𝐿𝑠1 is the wave  

 

length of the core plates for strong-axis buckling when only one wave occurs.  

 

 Setting 𝑀𝐴1 = 0 in Eq. (4.6) gives 

 

                                                  𝐹𝐵1 =
4𝑃1𝑒

𝐿𝑠1+4𝜇𝑒
                                                       (4.7) 

  

 After the first wave occurs, the axial force on the core plates is the Euler buckling  

 

force, 𝑃𝐸. In Figure 4.3, it can be seen the axial force is expressed in terms of (𝑃1 − 

 

𝜇𝐹𝐵1). Therefore, the force equilibrium can be obtained in Eq. (4.8):  

 

                                                 𝑃1 − 𝜇𝐹𝐵1 = 𝑃𝐸1                    (4.8)     

                

where 𝑃𝐸1 is Euler buckling force when only one wave occurs.         

 

 Substituting the Euler buckling force Eq. (4.3) into Eq. (4.8), the axial  

 

compressive force on the core plates can be expressed in Eq. (4.9) when only one wave  

 

occurs.    

 

                                              𝑃1 = 𝜇𝐹𝐵1 +
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠1
2                    (4.9) 

 

 The same method to determine contact force and axial compressive force will be  

 

used for core plates with more waves.  

 

 

4.1.3.2 Core Plates with Two Waves 

 

        After one wave has formed and the axial compressive force increases, the peak of  

 

the first wave will shift to the left and the second will form. The force distribution on the  
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core plates is shown in Figure 4.4. Since there are two waves in the core plates, the wave  

 

length for this case, 𝐿𝑠2, will be half of the critical length of the core plates, 𝐿𝑐−𝑐𝑜.  

 

   The bending moment at point 𝐴2 is expressed in Eq. (4.10). The contact force,  

 

𝐹𝐵2, between concrete and the core plate for this case is expressed in Eq. (4.11) by setting   

 

𝑀𝐴2 = 0 in Eq. (4.10). The force equilibrium of the core plates in the axial direction can  

 

be expressed in Eq. (4.12). The axial compressive force, 𝑃2, in the core plates when two  

 

waves occur can be obtained in Eq. (4.13) by reorganizing Eq. (4.12).  

 

                       𝑀𝐴2 = 2𝐹𝐵2
𝐿𝑠2

4
+ 2𝜇𝐹𝐵2𝑒 + 𝑃2𝑒 − 𝜇𝐹𝐵2𝑒 − 𝐹𝐵2

3𝐿𝑠2

4
                (4.10) 

 

                                                             𝐹𝐵2 =
4𝑃2𝑒

𝐿𝑠2−4𝜇𝑒
                    (4.11) 

 

                                                          𝑃2 − 3𝜇𝐹𝐵2 = 𝑃𝐸2                                       (4.12) 

 

                                                       𝑃2 = 3𝜇𝐹𝐵2 +
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠2
2       (4.13) 

 

where 𝐹𝐵2is the contact force between the concrete and the core plates when two waves  

 

occur, 𝑃𝐸2 is the Euler buckling force in the core plates when two waves occur, and 𝐿𝑠2 is  

 

the wave length of the core plates when two waves occur.  

 

 

4.1.3.3 Core Plates with Three Waves 

 

        If the axial compressive force keeps increasing, the third wave forms in the core  

 

plate. The wave length, 𝐿𝑠3, will be one third of the critical length of the core plates,  

 

𝐿𝑐−𝑐𝑜. The force distribution in the core is shown in Figure 4.5. Since there are two  

 

waves in the core plates, the wave length for this case, 𝐿𝑠3, will be one third of the critical  

 

length of the core plates, 𝐿𝑐−𝑐𝑜. 

 

    The bending moment at point 𝐴3 is expressed in Eq. (4.14). The contact force, 𝐹𝐵3,  

 

between concrete and the core plate for this case is expressed in Eq. (4.15) by setting  
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𝑀𝐴3 = 0 in Eq. (4.14). Force equilibrium of the core plates in the axial direction is  

 

expressed in Eq. (4.16). The axial compressive force, 𝑃3, in the core plates when three  

 

waves occur can be obtained in Eq. (4.17) by reorganizing Eq. (4.16).  

 

   𝑀𝐴3 = −𝐹𝐵3𝜇𝑒 + 𝑃3𝑒 − 𝐹𝐵3
5𝐿𝑠3

4
+ 2𝐹𝐵3𝜇𝑒 + 2𝐹𝐵3

3𝐿𝑠3

4
− 2𝐹𝐵3𝜇𝑒 − 2𝐹𝐵3

𝐿𝑠3

4
       (4.14) 

 

                                                           𝐹𝐵3 =
4𝑃3𝑒

𝐿𝑠3+4𝜇𝑒
                           (4.15) 

   

                                                         𝑃3 − 5𝜇𝐹𝐵3 = 𝑃𝐸3     (4.16) 

 

                                                     𝑃3 = 5𝜇𝐹𝐵3 +
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠3
2                 (4.17) 

 

where 𝐹𝐵3 is the contact force between the concrete and the core plates when three waves  

 

occur in the core plates, 𝑃𝐸3 is the Euler buckling force in the core plates when three  

 

waves occur, and 𝐿𝑠3 is the wave length of the core plates when three waves occur.  

 

 

4.1.3.4 Core Plates with Four Waves 

 

      If the axial compressive force keeps increasing, the fourth wave forms in the core  

 

plate. The wave length, 𝐿𝑠4, will be one fourth of the critical length of the core plates,  

 

𝐿𝑐−𝑐𝑜. The force distribution in the core is shown in Figure 4.6. The bending moment at  

 

point 𝐴4 is expressed in Eq. (4.18). The contact force, 𝐹𝐵4, between concrete and the core  

 

plate for this case is expressed in Eq.  (4.19) by setting 𝑀𝐴4 = 0 in Eq. (4.18). The force  

 

equilibrium of the core plates in the axial direction can be expressed in Eq. (4.20). The  

 

axial compressive force, 𝑃4, in the core plates when four waves occur can be obtained in  

 

Eq. (4.21) by reorganizing Eq. (4.20).  

 

𝑀𝐴4 = 𝐹𝐵4𝜇𝑒 + 𝐹𝐵4
7𝐿𝑠4

4
− 𝑃4𝑒 − 𝐹𝐵4

5𝐿𝑠4

4
− 2𝐹𝐵4𝜇𝑒 + 2𝐹𝐵4𝜇𝑒 + 2𝐹𝐵4

3𝐿𝑠4

4
− 2𝐹𝐵4

𝐿𝑠4

4
−

2𝐹𝐵4𝜇                                                                                                                            (4.18)                 

 

                                                            𝐹𝐵4 =
4𝑃4𝑒

𝐿𝑠4−4𝜇𝑒
                                                    (4.19)    
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                                                        𝑃4 − 7𝜇𝐹𝐵4 = 𝑃𝐸4                                                (4.20) 

 

                                                      𝑃4 = 7𝜇𝐹𝐵4 +
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠4
2                             (4.21) 

 

where 𝐹𝐵4 is the contact force between the concrete and the core plates when four waves  

 

occur in the core plates, 𝑃𝐸4 is the Euler buckling force in the core plates when four  

 

waves occur, and 𝐿𝑠4 is the wave length of the core plates when four waves occur. 

 

 

4.1.3.5 General Equation for Contact Force and Axial  

Compressive Force on the Core Plates  

 

 The equations for contact force and axial compressive force on the core plates are  

 

shown in Table 4.1, in which the equations derived in the previous sections are listed and  

 

the wave number ranges from one to four. The axial compressive force in the core plates  

 

for any wave number can be simplified in Eq. (4.22):  

 

                           𝑃𝑘 = (2𝑘 − 1)𝜇𝐹𝐵𝑘 +
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠𝑘
2              (k =1, 2… n)              (4.22) 

 

where 𝑘 is the wave number, which is the ratio of critical length of the core to the wave  

 

length (𝐿𝑐−𝑐𝑜/𝐿𝑠𝑘); and 𝐿𝑠𝑘 is the wave length when the core plates have 𝑘 waves. 

 

 The equation for the contact force for the case of even waves is different from that  

 

for the case of odd waves. When odd waves occur, the contact force, 𝐹𝐵𝑘, can be  

 

expressed in Eq. (4.23), which is summarized from the related equations listed in Table  

 

4.1.  

 

                                                    𝐹𝐵𝑘 =
4𝑃𝑘𝑒

𝐿𝑠𝑘+4𝜇𝑒
              (k =1, 3 … (2n-1))       (4.23) 

 

 Substituting Eq. (4.22) into Eq. (4.23), the contact force for odd waves is obtained  

 

in Eq. (4.24), which relates to the material property and the geometry of the core plates.  

 

Substituting Eq. (4.24) back into Eq. (4.22), the axial compressive force for odd waves  
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can be expressed in Eq. (4.25).      

 

           𝐹𝐵𝑘 =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
= 4𝑃𝐸 (

𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
)
2

[
1

(
𝐿𝑠𝑘
𝑒
)+8𝜇(1−𝑘)

]    

                                                                 (k =1, 3… (2n-1))     (4.24) 

   

𝑃𝑘 =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒(2𝑘−1)𝜇

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
+
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

(
𝐿𝑐−𝑐𝑜
𝑘

)2
= 𝑃𝐸 (

𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
)
2

[1 +
4𝜇(2𝑘−1)

(
𝐿𝑠𝑘
𝑒
)+8𝜇(1−𝑘)

]  

                                 (k=1, 3… (2n-1))      (4.25) 

  

 When core plates buckle in even waves, the contact force, 𝐹𝐵𝑘, can be expressed  

 

in the Eq. (4.26), which is summarized from the related equations listed in the Table 4.1.  

 

                                                    𝐹𝐵𝑘 =
4𝑃𝑘𝑒

𝐿𝑠𝑘−4𝜇𝑒
          (k=2, 4… 2n)                    (4.26) 

  

 Substituting Eq. (4.22) into Eq. (4.26), the contact force for even waves is 

 

obtained in Eq. (4.27), which depends on the material property and the geometry of the  

 

core plates.  

 

𝐹𝐵𝑘 =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
= 4𝑃𝐸 (

𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
)
2

[
1

(
𝐿𝑠𝑘
𝑒
)+8𝜇𝑘

]     (k=2, 4, … 2n)                     (4.27) 

  

 Substituting Eq. (4.27) back into Eq. (4.22), the axial compressive force for odd  

 

waves can be expressed in Eq. (4.28):   

 

 𝑃𝑘 =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒(2𝑘−1)𝜇

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
+
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

(
𝐿𝑐−𝑐𝑜
𝑘

)2
= 𝑃𝐸 (

𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
)
2

[1 +
4𝜇(2𝑘−1)

[(
𝐿𝑠𝑘
𝑒
)+8𝜇𝑘]

]  

          (k=2, 4, … 2n)           (4.28) 

  

 Equations (4.24), (4.25), (4.27), and (4.28) show clearly that the contact force and  

 

the postbuckling axial compressive force are a function of the critical force 𝑃𝐸 amplified  

 

by the ratio (
𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
)
2

, and the ratio 
𝐿𝑠𝑘

𝑒
, in addition to the number of the waves, 𝑘, and  

 

coefficient of friction, 𝜇.  

  

 According to the previous research (Wu et al. 2014), the wave length of the core  
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plate, 𝐿𝑠𝑘, can be calculated by using Eq. (2.4) when strong-axis buckling occurs to the  

 

core plate. The wave number, 𝑘, can be determined by the ratio of the critical length of  

 

the core plate to the wave number (𝐿𝑐−𝑐𝑜/𝐿𝑠𝑘).    

 

 

4.2 Verification with Finite Element Method (FEM) Model 

of BRBs under Monotonic Axial Compression 

 

 The BRBs in tests 1, 5, 6, and 8 had strong-axis buckling after the cyclic loading.  

 

These BRBs are divided into three groups according to the cross-sectional dimensions of  

 

the core plates. The BRB in test 1 is the model 1, the BRB in test 5 is the model 2, and  

 

BRBs in test 6 and 8 are the model 3, which are listed in Table 4.2. These three groups of  

 

BRBs under monotonic axial compression will be simulated in a finite element program.  

 

The axial compressive forces from the simulation method will be compared with those  

 

calculated with the derived equations.  

 

 

4.2.1 Calculation of Postbuckling Axial Compressive 

Force Using Derived Equation 

 

Wu et al. (2014) derived the equation for the wave length when the core plates  

 

have strong-axis buckling, which is Eq. (2.4) in Chapter 2. The relationship between  

 

Young’s modulus of elasticity of the core plate, E, and the yielding stress, 𝐹𝑦, is obtained  

 

in Eq. (4.29). The wave length of the core plates for strong-axis buckling is about 6.8  

 

times the width of the core plates, which is expressed in Eq. (4.30).  

  

                                                         
𝐸

𝐹𝑦
=

29,000,000

40900
≈ 709                   (4.29) 

 

                    𝐿𝑠𝑘 = √
4𝜋2(𝐸𝐼𝑠)𝑒𝑓𝑓

𝑃𝑦
= √

4𝜋2×0.02𝐸𝐼𝑠

𝐹𝑦𝑤𝑐𝑡𝑐
√
4𝜋2×0.02×709×𝑤𝑐3𝑡𝑐

12𝑤𝑐𝑡𝑐
≈ 6.8 𝑤𝑐           (4.30)  

 

The critical length of the core plate is 123 in. for test 1 (model 1); the wave  
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number of the core plate, 𝑘, can be determined by the Eq. (4.31).  

 

                                               𝑘 =
𝐿𝑐−𝑐𝑜

𝐿𝑠𝑘
=

123

6.8×9.25
= 2                                                (4.31) 

 

Since 𝑘 equals 2, Eq. (4.28) will be used to calculate the axial compressive force.  

 

𝑃2 =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒(2𝑘−1)𝜇

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
+
𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

(
𝐿𝑐−𝑐𝑜
𝑘

)2
=

4×3.142×2528316×123×0.0625×(2×2−1)×0.57

(
123

2
)
2
×(

123

2
−8×2×0.57×0.0625)

+

3.142×2528316×131.9

(
123

2
)
2 = 875 × 103𝑙𝑏𝑓                                  (4.32) 

  

 The calculations for the upper bound and lower bound of buckling force for  

 

models 2 and 3 follow the same rule as model 1. Since models 2 and 3 have no integral  

 

wave number, the upper bound of the buckling force is used as one for three waves and  

 

the lower bound of the buckling force is used as one for two waves. The buckling forces  

 

for these three models are shown in Table 4.2.  

 

 

4.2.2 Finite Element (FE) Simulation of BRBs  

with Monotonic Axial Compression 

       

To verify the equation derived in the last section, the finite element simulation  

 

method is adopted. The BRB without the connection plate will be simulated in ANSYS  

 

software. In the finite element simulation model, BRBs only have core plates, concrete,  

 

casing, and air gap around the core plates, which is the same as shown in Figure 4.1 (a).  

 

The length of the BRB in the simulation is the total length of the BRB minus the length  

 

of the connection plates, which equals the critical length of the core plates.  

 

Element SOLID 186 is used for all the members of the BRB, which is a higher  

 

order three-dimensional 20-node solid element that exhibits quadratic displacement  

 

behavior. The element TARGE 170 is used to represent various three-dimensional  

 

“target” surface for the associated contact elements. The element CONTA 174 is used to  
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represent contact and sliding between three-dimensional “target” surfaces and a  

 

deformable surface, defined by this element. Both elements TARGE 170 and CONTA  

 

174 are used for the air gap. The monotonic axial compressive load is applied on one end  

 

of the core plates. The other end of the core plates is fixed, which is the same as the  

 

boundary condition of core plates in the tests. Since the stress-strain curve for the core  

 

plate in the last section was considered bi-linear, a bi-linear stress-strain curve will be  

 

used for the material property of the core plates in the simulation. The normal penalty  

 

stiffness factor, FKN, which is used to determine contact stiffness and penetration, is  

 

chosen as 0.001 for the convergence, and the friction coefficient for between the concrete  

 

and steel core is taken as 0.57. 

 

The BRB model built in Ansys is shown in Figure 4.7. Figure 4.7 (a) is a side  

 

view of the BRB along its length. The axial compressive force is applied at the top end of  

 

the core plate; the bottom end of the BRB is fixed. Figure 4.7 (b) shows a cross-sectional  

 

view of the BRB, in which the core plate is in the middle with the concrete surrounded,  

 

and the outside thin layer is the steel casing. The bar-shaped elements are the gap element  

 

between the core plates and the concrete.  

 

The displacement-control loading method is used for the finite element  

 

simulation. The eccentricity is added to the strong axis of the core plate to help to create  

 

strong-axis buckling deformation. The axial displacement and horizontal displacement  

 

are applied on every node on the surface of the core plate at the loading end, in order to  

 

apply the axial compressive load and the eccentricity. Selection of the ratio of horizontal  

 

displacement to the axial displacement, λ, is very critical. If this ratio is too small, strong- 

 

axis buckling will not occur in the core plates. If this ratio is too large, the buckling force  
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obtained will be smaller than the actual value.  

 

Figures 4.8 and 4.9 show the force versus displacement for model 1 with three  

 

different λ values, which are 0.05, 0.15, and 0.25. Figure 4.9 shows the von misses stress  

 

distribution and deformation of the core plate for the three λ values. From the plot of the  

 

force vs. displacement or the deformation of the core plates, the BRB with λ=0.15 shows  

 

clear strong-axis buckling performance. The same method is applied for the other two  

 

models: the horizontal displacements for models 1, 2, and 3 are 0.525 in., 0.8 in. and 0.4  

 

in., respectively, as listed in Table 4.3. Strong-axis buckling deformation, wave number,  

 

and axial compressive force will be compared for the closed-form equation and finite  

 

element simulation. The cross-sectional dimensions for the simulated BRBs are listed in  

 

Table 4.3. These three BRBs are the same as those listed in Table 4.2.                       

 

The axial compressive force on the core plate vs. the axial displacement for the  

 

three models are shown in Figure 4.10. The postbuckling force for each model is marked  

 

in red circle and they are 863 kips for model 1, 421.3 kips for model 2, and 322.3 kips for  

 

model 3, respectively. The deformations of the core plates in these three models during  

 

the FE simulation are shown in Figure 4.11. It can be seen that they all have strong-axis  

 

buckling. The wave number for the strong-axis buckling on the core in model 1 is 2, for  

 

model 2 it is 1.5, and for model 3 it is 2.   

 

The FE simulation results and the closed-form equation results are listed in Table  

 

4.4, which include the wave number and the postbuckling load. It can be seen that the 

 

core buckled at a similar wave number as the calculation results, and the postbuckling  

 

forces from the simulation fall within the range obtained from the derived equations.  

 

Therefore, the closed-form equation solutions for the postbuckling force on the core  
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plates for strong-axis buckling are similar to the simulation results.  

 

 

4.3 Verification of Postbuckling Forces from the Derived 

Equations with the Backbone Curves 

Obtained from the Tests 

 

In this section, the postbuckling forces in the core plates, calculated in Section  

 

4.2.1, from the closed-form equations, are compared with the test results. The original  

 

test results are plotted using the hysteretic loops. In order to show the elastic zone and  

 

plastic zone of the material for the braces, the backbone curves for the test results are  

 

used. The backbone curve consists of the maximum force for each loop and the  

 

corresponding displacement. The backbone curves for the three models listed in Section  

 

4.2.1 are shown Figure 4.12.  

 

To verify the equations derived in the last section, the closed-form equation  

 

buckling forces for the three models are plotted in the same figure with the corresponding  

 

backbone curve obtained from the tests shown in Figure 4.12.  

 

The result for test 1 is shown in Figure 4.12 (a). From Figure 3.9 (a), it is seen that  

 

the core plate in this test buckled in two waves, which is the same as the calculated wave  

 

number. Since buckling occurs after the steel yields, it is expected that the calculated  

 

buckling force will exceed the yield postload; however, it is clear that the true  

 

postbuckling load is between k=2 and k=3.  

 

The results for Test 5 are plotted in Figure 4.12 (b). In Figure 3.9 (e), the buckling  

 

wave number of the core plate cannot be distinguished very significantly. The reason for  

 

this might be that the test did not go far enough to reach the maximum wave number;  

 

failure of the BRB was due to another cause, such as connection plates buckling.  

 

Therefore, the ultimate force from the test is lower than the upper bound of the buckling  
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force calculated with the closed-form equation, which is shown in Figure 4.12 (b).   

 

Since tests 6 and 8 have core plates with the same cross-sectional dimension of  

 

7.75 in. × 1 in., they get the same result by using the derived equations to calculate the  

 

postbuckling force on the core plate. Therefore, both tests 6 and 8 are plotted in Figure  

 

4.12 (c). The calculated wave number for these specimens is 3.0, but it is hard to  

 

determine the wave numbers of the core plates from Figure 3.9 (f) and 3.9 (h). The reason 

 

for this might be that the specimens had a weak-axis buckling and strong-axis buckling  

 

combined failure mode. Since buckling happens after the material yields, it is reasonable  

 

for the plastic zone of the material property to fall within the upper bound and the lower  

 

bound obtained from the closed-form equation solution.  

 

From Figure 4.12, it can be seen that for all the lower bound solutions, the closed- 

 

form equations are lower than the yielding force obtained from the tests. In the BRB tests  

 

buckling usually happens after the material yields. This means that the results calculated  

 

using the closed-form equations are conservative. This is not surprising because of the  

 

assumptions made in the derivation equations, for example, that the section of the  

 

BRB which has a connection plate was not considered in the closed-form solution or the  

 

FE simulation.   
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Table 4.1   

The contact force and axial compressive force on the core for different waves 

 

Wave number Contact force, B Axial compressive force, P 

1 
𝐹𝐵1 =

4𝑃1𝑒

𝐿𝑠1 + 4𝜇𝑒
 𝑃1 = 𝜇𝐹𝐵1 +

𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠1
2  

2 
𝐹𝐵2 =

4𝑃2𝑒

𝐿𝑠2 − 4𝜇𝑒
 𝑃2 = 3𝜇𝐹𝐵2 +

𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠2
2  

3 
𝐹𝐵3 =

4𝑃3𝑒

𝐿𝑠3 + 4𝜇𝑒
 𝑃3 = 5𝜇𝐹𝐵3 +

𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠3
2  

4 
𝐹𝐵4 =

4𝑃4𝑒

𝐿𝑠4 − 4𝜇𝑒
 𝑃4 = 7𝜇𝐹𝐵4 +

𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜

𝐿𝑠4
2  

                         

 

Table 4.2 

The upper bound and lower bound of the buckling force for three models 

 

Model 

# 

Core plate 

size , in. 

 

Test 

No.  𝐸
𝐹𝑦⁄

 
Wave 

length, 

in. 

Calculated 

wave 

number 

Actual 

wave 

number 

Calculated Axial 

postbuckling 

load ,Kips 

Upper 

bound 

Lower 

bound 

1 9.25x2x123 1 709 62.3 2.0 2 1993 876 

2 10x1x153 5 709 67.4 2.2 - 903 398 

3 7.75x1x157 6&8 709 52.2 3.0 - 421 185 

                    

                    

Table 4.3 

Simulation models in Ansys 

 

Model # Core plate size, 

in. 

Casing size, 

in.   

Horizontal 

displacement, in.  

λ 

1 9.25x2x123 12x12x0.25 0.525 0.15 

2 10x1x153 12x12x0.25 0.8 0.32 

3 7.75x1x157 10x10x0.25 0.4 0.2 
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Table 4.4 

Comparison of the simulation results with calculation results 

 

 Model 

number 

Simulation 

result 

Equation calculation    

result 

Buckling 

direction 

1 Strong Strong 

2 Strong Strong 

3 Strong Strong 

Wave 

number 

1 2 2 

2 1.5 2.2 

3 2 3.0 

Axial 

compressive 

force 

                kips Upper 

bound  

Lower 

bound 

1 863 1993 876 

2 421.3 903 398 

3 322.3 421 185 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

Figure 4.1 Deformation of the core plate under axial compression: (a) The initial 

status of the core plates, (b) Core plates buckle with axial compressive load 

and (c) The force on the core plates after they buckle 

 

 

 
 

Figure 4.2 Force equilibrium diagram for the top core plate 
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Figure 4.3 Force distribution on the core plate when it has one wave 

 

 

 
 

Figure 4.4 Force distribution on the core plate when it has two waves 

 

 

 
 

Figure 4.5 Force distribution on the core plates when they have three waves 

 

 

 
 

Figure 4.6 Force distribution on the core plates when they have four waves 
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                                 (a)                                           (b)  

 

Figure 4.7 BRB model #1 built in Ansys: (a) Side view of the BRB  

and (b) Cross-section of the BRB 

 

 

 
 

Figure 4.8 Force vs. displacement for the same model with different value of λ 
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(a)  

 

 
 

(b)  

 

 
 

(c)  

 

Figure 4.9 Von misses stress distribution and the deformation on the core plates 

with different value of λ: (a) λ =0.05, (b) λ =0.15 and (c) λ =0.25 
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Figure 4.10 Axial compressive force vs. the displacement for three models 
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(a)  

 

 
 

(b)  

 

 
 

(c)  

 

Figure 4.11 Deformation of the core in the three models: (a) Deformation of the core in 

model 1 (2 waves), (b) Deformation of the core in model 2 (1.5 waves) and 

 (c) Deformation of the core in model 3 (2 waves) 
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                                                        (a) 

 

 
 

(b) 

 

Figure 4.12 Comparison of test result with calculation and simulation result (k is 

the wave number): (a) Test 1, (b) Test 5 and (c) Tests 6 and 8 

k=2 

k=3 

k=2 

k=3 
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(c)  

 

Figure 4.12 Continued 
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CHAPTER 5 

 

 

STRUT-AND-TIE MODEL FOR THE  

 

CROSS-SECTION OF THE BRBS 

 

 

In some of the experiments, BRBs had the core plates buckling in the strong-axis,  

 

as shown in Figures 3.9 (a), (e), (f) and (h), while some BRBs had the core plates  

 

buckling in the weak-axis, as shown in Figures. 3.9 (c) and (g). Once concrete crushes,  

 

concrete powder falls due to the gravity. The space occupied by concrete will be available  

 

for core plates to deform. Core plates in all BRBs are flat, which means that the width of  

 

core plates is much larger than the thickness. Since the cross-section of the BRB is  

 

square-shaped, the concrete cover in the strong axis of core plates is much thinner than  

 

the concrete cover in the weak axis of core plates. Therefore, compared to weak-axis  

 

buckling, the strong-axis buckling of core plates has a great potential to cause bulging  

 

and subsequent local buckling of the steel casing. The bulging on the casing in test 1 is  

 

shown in Figure 5.1, which was caused by the strong-axis buckling of the core plates.   

 

This section aims to use the strut-and-tie model (STM) to find the critical angle  

 

between the strut and tie to prevent the local buckling of the steel casing. 

 

 

5.1 Theory of STM 

 

 Zsarnoczay (2013) suggested that the lower bound of the ratio of width to  

 

thickness of the core plates should not be smaller than 2 to avoid strong-axis buckling. In  
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the present experiments, the ratio of the width to the thickness of the core plates ranges  

 

from 3.125 to 10. The ratios of the width to the thickness of the core plates in all  

 

specimens are greater than the lower bound suggested by Zsarnoczay (2013), but the 

 

strong-axis buckling still occurs. Therefore, a new theory is needed to explain this  

 

phenomenon. 

 

 Since the debonding material or the air gap between the concrete and the core  

 

plates are very thin, the core plates will easily contact and compress the concrete under  

 

cyclic loading when they buckle. When the contact force, which is applied on concrete  

 

from core plates, reaches the compressive strength of concrete, concrete starts to crack.  

 

The steel casing works as confinement to hold the concrete together, even as the concrete  

 

cracks. Along with increasing axial compressive force on the core, the core deforms and  

 

produces greater compressive forces on the concrete. This compressive force is  

 

transferred through the concrete to the steel casing. When the compressive force from the  

 

core reaches a critical value, the steel casing bulges, which usually happens when the  

 

core buckles.  

 

 The STM is a truss idealization of composite members consisting of steel ties and  

 

concrete struts. The STM approach has evolved as one of the most useful design methods  

 

for shear critical structures, such as deep beam analysis, beam column joints, and for  

 

other disturbed regions in concrete structures. The STM theory is used to explain why the  

 

strong-axis buckling or weak-axis buckling occurs for a given BRB.  

 

             

5.2 Strut-and-Tie Model Built in BRB Cross-Section 

 

 The STM method is a conceptual framework where the stress distribution in a  

 

structure is idealized as a system of struts, ties and nodes. A strut is a compression  
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member which consists of concrete and carries compressive forces. A tie is a tension  

 

member which consists of the steel reinforcement and carries tension forces. A node is  

 

the connection between a strut and a tie, which consists of concrete. 

 

 

5.2.1 The STM for the Cross-Section of a BRB 

 

 The cross-section of a BRB is shown in Figure 5.2 (a). In the cross-section of a  

 

BRB, the node is located in the concrete, right next to the core; the tie is the steel casing;  

 

and the struts represent the concrete between the core and the casing. The simplified STM  

 

for the left part of the cross-section of a BRB is shown in Figure 5.2 (b). The compressive  

 

force on the node applied by the core plates is the contact force, 2𝐹𝐵, which was obtained  

 

in Chapter 4. According to force equilibrium in the horizontal direction, the tensile force  

 

in the tie is B due to the geometric symmetry of the STM.   

 

 If the core plates buckle in the strong-axis direction, the node certainly cracks  

 

first. Therefore, the failure mode of the model is either concrete strut cracking or tension  

 

tie yielding. 

 

 

5.2.2 Determination of the Width and Thickness 

 of the Strut and the Tie 

 

 The STM is a three-dimensional model. The three-dimensional view of the STM  

 

on the left side of the core plates is shown in Figure 5.2 (c). This figure shows the STM  

 

for the BRB in one perpendicular dimension along the length of the BRB.         

 

The perpendicular dimension of the strut or tie is perpendicular to its axis and the  

 

plane of the truss model. In this case, the half buckling wavelength of the core plates will  

 

be used as the perpendicular dimension of the strut or tie, shown in Figure 5.3. Figure  

 

5.3 (a) shows the overall view of a core plate, in which the solid-red-colored face is 
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perpendicular to the weak axis of the core plate, and the pattern-green-colored face is  

 

perpendicular to the strong axis of the core plate. Figure 5.3 (b) shows one wavelength  

 

and half wavelength for strong-axis buckling, which are 𝐿𝑠 and 𝐿𝑠/2, respectively. 

 

 Figure 5.2 (b) shows the plan view of the STM for the cross-section of the BRB.  

 

Lines DE, AD, AO are tensile ties in the steel casing. Points A and D are cross points for  

 

these three axial lines. They are also the nodes for the strut-and-tie model. The two core  

 

plates apply a compressive force, 2𝐹𝐵, on the concrete in the direction of the arrow. This  

 

force is considered as a concentrated force and the loading point is at the midpoint along  

 

the thickness of the core plates, which is point C in this figure.  

 

 One edge of the strut is obtained by drawing a line parallel to line DC from the  

 

corner of the core plate (point F), and this line crosses the casing at point G. The other  

 

edge of the strut (line JK) is obtained by mirroring line FG about line CD. The other strut  

 

(AC) is obtained by using the same method. 

 

 Therefore, the triangle ADC is the simplified strut-and-tie model for the cross  

 

section of the BRB. The points A, D, and C are the nodal points; 𝑤𝑡 and 𝑤𝑠 are the width  

 

of the tie and the strut, respectively.  

 

 

5.3 General Equation for the Critical Angle 

 

5.3.1 Strength of the Tie 

 

 In the cross-section of the BRB, the tie is the steel casing. The tensile force, 𝐹𝑡, in  

 

the tie can be expressed in Eq. (5.1). Since the steel casing may not yield when the  

 

concrete strut cracks, the tensile stress of the steel, 𝑓𝑠, is used here. 

 

                                                                𝐹𝑡 = 𝐴𝑠𝑓𝑠                                          (5.1) 

 

where 𝐴𝑠 is the cross-sectional area of the tie (in this case the cross-sectional area of one 
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of  the four sides of the steel casing), which is the product of the tie thickness and the  

 

perpendicular dimension of the tie, 𝐿𝑠 2⁄ . An expression for 𝐴𝑠 is shown in Eq. (5.2). The  

 

tensile force in the tie, 𝐹𝑡, is expressed in Eq. (5.3) by substituting 𝐴𝑠 from Eq. (5.2) in  

 

Eq. (5.1): 

 

                                                           𝐴𝑠 = 𝑤𝑡 (𝐿𝑠 2)⁄                                                    (5.2) 

 

                                                           𝐹𝑡 = 𝑤𝑡𝑓𝑠(𝐿𝑠 2)⁄                                                  (5.3) 

 

where 𝑤𝑡 is the width of the tie or thickness of the steel casing wall, 𝐿𝑠 is the wavelength  

 

when the core plate buckles in the strong axis, and 𝐿𝑠/2 is the perpendicular dimension  

 

for the STM when the core plates buckle in the strong axis.  

                                                          

 

5.3.2 Strength of the Strut 

 

 According to the ACI Building Code 318 (2014), the compressive force in the  

 

strut can be expressed using Eq. (5.4): 

 

                                                          𝐹𝑛𝑠 = 0.85𝑓𝑐
′𝛽𝑠𝐴𝑐                    (5.4) 

 

where 𝐹𝑛𝑠 is the nominal compressive strength of the strut; 𝑓𝑐
′ is the compressive strength  

 

of the concrete; 𝐴𝑐 is the cross-sectional area of the strut, which is the product of the  

 

width,𝑤𝑠, and the perpendicular dimension of the strut, 𝐿𝑠 2⁄ , as shown in Figure 5.3; For  

 

a strut of uniform cross-sectional area over its length, the value of 𝛽𝑠 equals 1.0; and 𝐴𝑐  
 

is expressed in Eq. (5.5):   

 

                                                             𝐴𝑐 = 𝑤𝑠(𝐿𝑠/2)                                                  (5.5) 

 

From Figure 5.2 (a), the width of the strut, 𝑤𝑠, is equal to NH. Because line FH is  

 

parallel to line DA, the angle between line HF and FN is equal to the angle between line  

 

CA and line AD, 𝜃. In the right-angle triangle HNF, the length of line NH can be obtained  

 

from Eq. (5.6). Substituting Eq. (5.6) into Eq. (5.5), the cross-sectional area of the strut, 
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𝐴𝑐, can be expressed in Eq. (5.7). Therefore, the nominal compressive strength of the  

 

strut can be expressed as Eq. (5.8) by substituting Eq. (5.7) into Eq. (5.4).  

 

                                                       𝑤𝑠 = 𝐿𝑁𝐻 = 𝑡𝑐𝑠𝑖𝑛𝜃                                                (5.6) 

 

                                                         𝐴𝑐 = 𝑡𝑐𝑠𝑖𝑛𝜃(𝑙𝑠/2)                                         (5.7) 

  

                                         𝐹𝑛𝑠 = 0.85𝑓𝑐
′𝛽𝑠(𝑡𝑐𝑠𝑖𝑛𝜃)(𝐿𝑠 2) ⁄                              (5.8) 

 

where 𝑤𝑠 is the width of the strut, 𝐿𝑁𝐻 is the length of the line NH, 𝑡𝑐 is the total  

 

thickness of the core plates, and 𝜃 is the angle between the strut and the tie.  

 

  

5.3.3 Strength of the Nodal Zones 

 

 Both nodes and struts are composed of concrete. Once the nodes crush, the cracks  

 

originating from the nodes will propagate into the struts. Struts crossed by cracks inclined  

 

to the axis of the strut are weakened by the cracks. Therefore, the stability of nodes  

 

affects the stability of the struts. For nodal zones, the nominal compressive strength of a  

 

strut, 𝐹𝑛𝑛, is expressed in Eq. (5.9):  

 

                                                               𝐹𝑛𝑛 = 𝑓𝑐𝑢𝐴𝑛                                          (5.9) 

 

where 𝐹𝑛𝑛 is the strength of the nodal zone; 𝐴𝑛is the area of face of the node that the strut  

 

or tie acts on, perpendicular to the axis of strut and tie, so it equals either 𝐴𝑐 or 𝐴𝑡; and  

 

𝑓𝑐𝑢 is the effective compressive strength of the concrete and is expressed in Eq. (5.10).  

 

Substituting Eq. (5.10) into Eq. (5.9), the nominal compressive strength of the nodal zone  

 

can be expressed in Eq. (5.11). 

 

                                                             𝑓𝑐𝑢 = 0.85𝛽𝑛𝑓𝑐
′                                               (5.10) 

 

                                                             𝐹𝑛𝑛 = 0.85𝛽𝑛𝑓𝑐
′𝐴𝑛                            (5.11) 

 

where the value of 𝛽𝑛 equals 1.0 in nodal zones bounded on all sides by struts or bearing  

 

areas, or both. 



74 
 

 

 

5.4 Evaluation of the Nodal Zones 

 

 When strong-axis buckling occurs, the nodal zone is cracked and the struts may or  

 

may not crush. Therefore, the stress in the nodal zones will be checked to get the critical  

 

angle between the strut and tie, which determines the buckling direction of the core plates  

 

for a given BRB.  

 

 

5.4.1 Node C 

 

 The compressive force from the core plates, 2𝐹𝐵, is applied to Node C;  

 

compressive forces from the struts, 𝐹𝑛, are also applied to Node C, which is a  

 

compression-compression-compression node (C-C-C), and is shown in Figure 5.4.  

 

 

5.4.1.1 Stress on the Right Surface of Node C 

 

 The right surface of node C is subjected to a compressive force, 2𝐹𝐵, which is the  

 

contact force between the concrete and core plates. The stress on the right surface of node  

 

C equals the force over the area of contact surface between the concrete and core plates,  

 

expressed in Eq. (5.12).  

 

                                                   𝑓 (𝑟𝑖𝑔ℎ𝑡) =
2𝐹𝐵

𝐴𝑐𝑜
=

2𝐹𝐵

𝑡𝑐𝐿𝑠 2⁄
                            (5.12) 

 

where 𝐴𝑐𝑜 is the area of contact surface between the concrete and core plates, 𝐹𝐵 is the  

 

compressive force on the node, 𝑡𝑐 is total thickness of the core plates, and 𝐿𝑠/2 is the  

 

perpendicular dimension of the STM. 

 

 In Chapter 4, it was discussed that the contact force, 𝐹𝐵, varies for the odd  

 

waves and the even waves on the core plate, as expressed in Eqs. (4.24) and (4.27).  

 

Substituting Eqs. (4.24) and (4.27) into Eq. (5.12), respectively, and the stress on the right  

 

surface of node C can be obtained in Eqs. (5.13) and (5.14). Theoretically, to ensure  
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the integrity of node C, the stress on the right surface of node C cannot be greater than  

 

the nominal compressive stress, 𝑓𝑛𝑛.   

 

                     𝑓 (𝑟𝑖𝑔ℎ𝑡) =
16𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑡𝑐𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
≤ 𝑓𝑛𝑛        (k=1, 3, 5…)          (5.13) 

 

                     𝑓 (𝑟𝑖𝑔ℎ𝑡) =
16𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑡𝑐𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
≤ 𝑓𝑛𝑛        (k=2, 4, 6…)          (5.14) 

 

where 𝐸𝑟−𝑐𝑜 is the reduced modulus of the core plate, 𝐼𝑐𝑜 is the moment of the inertia of  

 

the core plate, µ is the frictional coefficient between core plate and the concrete, 𝑒 is the  

 

thickness of the air gap, and 𝑘 is the amount of the waves on the core plates.  

 

 

5.4.1.2 Stress on the Left Surface (Top and Bottom) 

on the Node C 

 

  The force distribution and cross-sectional area on the left surfaces of node C are  

 

the same. Therefore, only one surface is used for the calculation of the angle between the  

 

strut and the tie. 

 

 From force equilibrium in the horizontal direction of node C in Figure 5.5, Eq.  

 

(5.15) can be obtained.  

 

                                                                  𝐹𝑛 =
𝐹𝐵

𝑠𝑖𝑛𝜃
                                        (5.15) 

 

 The left surface of node C maintains its integrity if 𝐹𝑛𝑛 ≥ 𝐹𝑛. This equation can  

 

be revised as Eq. (5.16) by substituting Eqs. (5.15) and (5.11). Moving all terms with 𝜃 to  

 

the left side of the equation, Eq. (5.16) is transformed into Eq. (5.17). 

 

                        𝐹𝑛𝑛 = 𝐹𝑛𝑛 = 0.85𝛽𝑛𝑓𝑐
′𝐴𝑛 = 0.85𝛽𝑛𝑓𝑐

′𝑡𝑐𝑠𝑖𝑛𝜃 𝐿𝑠 2 ≥
𝐹𝐵

𝑠𝑖𝑛𝜃
 ⁄                (5.16) 

 

                                                           𝑠𝑖𝑛𝜃2 ≥
2𝐹𝐵

0.85𝑓𝑐
′𝛽𝑛𝑡𝑐𝐿𝑠

                                           (5.17) 

 

where 𝐴𝑛is the area of the face of the node that the strut acts on, perpendicular to the  

 

axis of strut and tie.  
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 When odd waves occur in the core plate, Eq. (4.24) is substituted into Eq. (5.17)  

 

to get Eq. (5.18). The angle between concrete and the core plate can be expressed in Eq.  

 

(5.19) for an odd number of waves.  

 

                          𝑠𝑖𝑛𝜃2 ≥
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑛𝑡𝑐𝐿𝑠(

𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
         (k=1, 3, 5…)         (5.18) 

 

                     θ ≥ 𝑎𝑟𝑐𝑠𝑖𝑛√
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑛𝑡𝑐𝐿𝑠(

𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
       (k=1, 3, 5…)         (5.19) 

 

 For an even number of waves, the contact force, 𝐹𝐵, is expressed in Eq. (4.27).  

 

Substituting Eq. (4.27) into Eq. (5.17), it can be transformed into Eq. (5.20). Simplifying  

 

Eq. (5.18), the angle between strut and tie can be found in Eq. (5.21) when even number  

 

of the waves occur.  

 

                                    𝑠𝑖𝑛𝜃2 ≥
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑛𝑡𝑐𝐿𝑠(

𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
       (k=2, 4, 6…)        (5.20) 

 

                               θ ≥ arcsin√
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑛𝑡𝑐𝐿𝑠(

𝐿𝑐−𝑐𝑜
𝑘

)2(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
       (k=2, 4, 6…)       (5.21) 

             

  From Eqs. (5.19) and (5.21), it can be seen that the angle between strut and tie is 

 

inversely proportional to concrete compression strength. If other factors remain the same,  

 

increasing concrete compression strength can reduce the angle to prevent the local  

 

buckling of the steel casing.   

 

 

5.4.2 Nodes A and D 

 

 Since the STM geometry is symmetric and the strut forces are assumed to be  

 

equal, only a node D is analyzed. Node D is subjected to tensile forces from two ties and  

 

a compressive force from one strut, as shown in Figure 5.5, and is a compression-tension- 

 

tension node (C-T-T).  
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5.4.2.1 Stress on Right Surface of Node D 

  

 The right top surface of node D resists a tensile force with the value of contact  

 

force, 𝐹𝐵, which is obtained from the force equilibrium in the horizontal direction for the  

 

whole strut and tie model in Figure 5.2(b). Therefore, the stress on this surface of the  

 

node is the contact force over the cross-sectional area of the tie, which is expressed in  

 

Eqs. (5.22) and (5.23). Eq. (5.22) shows the case when the core plates have odd waves  

 

and Eq. (5.23) when the core plates have even waves.  

  

         𝑓 (𝑟𝑖𝑔ℎ𝑡 𝑡𝑜𝑝) =
𝐹𝐵

𝐴𝑡
=

8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑤𝑡𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
≤ 𝑓𝑦         (k=1, 3, 5…)      (5.22) 

 

                 𝑓 (right top) =
𝐹𝐵

𝐴𝑡
=

8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑤𝑡𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
≤ 𝑓𝑦          (k=2, 4, 6…)      (5.23) 

 

 When strong-axis buckling occurs in the core plates, they compress the concrete  

 

to the left or right side along the width direction of the core plate. Node C crushes first,  

 

while struts may or may not crush, which depends on how much the core plates deform.  

 

After the struts crush, the core plates deform more in the horizontal direction in Figure  

 

5.2; the left and right walls of the steel casing will have a chance to yield, and even budge  

 

rather than the top and bottom walls of the steel casing. Therefore, the stress on this  

 

surface of the node might be smaller than the yielding stress of the steel casing  

 

(𝑓𝑦=60ksi).  

 

 

5.4.2.2 Stress on the Bottom Surface of Node D  

 

 This surface is subjected to the tensile force from tie, 𝐹𝑡. From the force  

 

equilibrium on node D in Figure 5.5, 𝐹𝑡 can be expressed as  

 

                                                             𝐹𝑡 = 𝐹𝐵 𝑡𝑎𝑛𝜃⁄                              (5.24) 

 

 Contact force, 𝐹𝐵, is expressed in Eqs. (4.24) and (4.27), which is substituted in  
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Eq. (5.24) for the calculation of 𝜃. When the core plate has an odd number of waves, the  

 

stress in the tie can be expressed in Eq. (5.25).  

 

 The tie does not yield in the early stages when the strong-axis buckling occurs in  

 

the core plates. When the core plates deform at large scale, the core plates crush the strut  

 

and bear on the steel casing, causing it to yield. Therefore, at the beginning of core plate  

 

buckling about the strong axis, the stress in the steel casing is less than the yield stress.  

 

When the strong-axis buckling of the core plates starts, the tie on the left or the right  

 

walls of the steel casing has not yielded yet. The relationship between the stress in the tie  

 

and the yield stress of the steel casing is expressed in Eq. (5.26).  The angle between the  

 

strut and tie from this limitation is expressed in Eq. (5.27). When the core plate has an  

 

even number of waves, stress in the tie can be expressed in Eq. (5.28). The angle between  

 

the strut and tie from this limitation is expressed in Eq. (5.29).  

 

                         𝑓(𝑏𝑜𝑡𝑡𝑜𝑚) =
𝐹𝑡

𝐴𝑡
=

𝐹𝐵

𝑤𝑡(
𝐿𝑠
2
)𝑡𝑎𝑛𝜃

=

4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)

𝑤𝑡𝐿𝑠
2
𝑡𝑎𝑛𝜃

                     (5.25) 

 

           𝑓(𝑏𝑜𝑡𝑡𝑜𝑚) =
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑤𝑡𝐿𝑠𝑡𝑎𝑛𝜃(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
≤ 𝑓𝑦      (k=1, 3…, (2n-1))     (5.26)  

 

                         𝜃 ≥ 𝑎𝑟𝑐𝑡𝑎𝑛 (
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑓𝑦𝑤𝑡𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
)     (k=1, 3…, (2n-1))    (5.27) 

 

               𝑓(𝑏𝑜𝑡𝑡𝑜𝑚) =
4𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑤𝑡(𝐿𝑠/2)𝑡𝑎𝑛𝜃(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
≤ 𝑓𝑦   (k=2, 4, 6…)             (5.28) 

 

                                𝜃 ≥ 𝑎𝑟𝑐𝑡𝑎𝑛 (
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑓𝑦𝑤𝑡𝐿𝑠(
𝐿𝑐−𝑐𝑜
𝑘

)
2
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
)    (k=2, 4, 6…)             (5.29) 

 

where 𝐹𝑡 is the tensile force in the tie, 𝐴𝑡 is the area of the cross section of the tie, 2𝐹𝐵 is  

 

the contact force on the concrete from the steel core plates, 𝑤𝑡 is the width of the tie,  

 

𝐿𝑠/2 is the perpendicular dimension of the tie, 𝜃 is the angle between the strut and the  
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tie, 𝐸𝑟−𝑐𝑜 is the reduced modulus of the core plate, 𝐼𝑐𝑜 is the moment of the inertia of the  

 

core plate, µ is the frictional coefficient between the core plate and the concrete, 𝑒 is the  

 

thickness of the air gap, and 𝑘 is the amount of the waves.  

 

      

5.4.3 The Critical Angle between the Strut and Tie, 𝜃𝑐𝑟 

 

 Only Eqs. (5.19), (5.21), (5.27), and (5.29), obtained in Sections 5.4.1.2, and  

 

5.4.2.2, involve 𝜃. Therefore, these four equations are used to find the critical angle  

 

between the strut and the tie, 𝜃𝑐𝑟.  

 

 The wavelength of the core plates, 𝐿𝑠𝑘, can be obtained by dividing the critical  

 

length of the core plates, 𝐿𝑐−𝑐𝑜, by the wave number, k, which is expressed in Eq. (5.30): 

 

                                                               𝐿𝑠𝑘 =
𝐿𝑐−𝑐𝑜

𝑘
                                                     (5.30) 

  

 The critical angle between the strut and the tie is chosen as the maximum value of  

 

all the minimum angels obtained in the previous section by replacing 𝐿𝑠𝑘 with (𝐿𝑐−𝑐𝑜/𝑘).  
 

Therefore, the critical angle between strut and tie will be expressed as Eq. (5.31) for the  

 

case when odd waves occur in the core plates, and Eq. (5.32) for the case when even  

 

waves occur in the core plates.  

 

𝜃𝑐𝑟 = 𝑚𝑎𝑥

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 [

8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑓𝑦𝑤𝑡(
𝐿𝑐−𝑐𝑜
𝑘

)
3
(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
] ,

  𝑎𝑟𝑐𝑠𝑖𝑛√
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑠𝑡𝑐(

𝐿𝑐−𝑐𝑜
𝑘

)3(
𝐿𝑐−𝑐𝑜
𝑘

+8𝜇𝑒−8𝑘𝜇𝑒)
}
 
 

 
 

           (k=1, 3, 5…)          (5.31)   

 

𝜃𝑐𝑟 = 𝑚𝑎𝑥

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 [

8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

𝑓𝑦𝑤𝑡(
𝐿𝑐−𝑐𝑜
𝑘

)
3
(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
] ,

  𝑎𝑟𝑐𝑠𝑖𝑛√
8𝜋2𝐸𝑟−𝑐𝑜𝐼𝑐𝑜𝑒

0.85𝑓𝑐
′𝛽𝑠𝑡𝑐(

𝐿𝑐−𝑐𝑜
𝑘

)3(
𝐿𝑐−𝑐𝑜
𝑘

−8𝑘𝜇𝑒)
}
 
 

 
 

                    (k=2, 4, 6…)         (5.32) 

 

 From both equations above, it can be seen that the critical angle between strut and 
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tie is inversely proportional to the thickness of steel casing. Increasing thickness of steel  

 

casing can reduce the value of critical angle. In other words, increasing the thickness of  

 

the steel casing wall, 𝑤𝑡,  and keeping the rest part of BRBs the same, can help prevent  

 

the local buckling of the steel casing.   

  

 

5.5 Calculation of Critical Angle for the  

Specimens Tested in the Laboratory 

 

 Assuming that all nine specimens had strong-axis buckling, critical angles, 𝜃𝑐𝑟,  

 

are calculated for these specimens. The parameters needed for the calculation are listed in  

 

Table 5.1. The predicted critical angle based on the STM model, 𝜃𝑐𝑟, will be compared  

 

with the real angle between the strut and tie in the specimens. 

 

 In Table 5.1,  𝐼𝑐𝑜 is the moment of the inertia for the core plate, 𝐿𝑐−𝑐𝑜 is the  

 

critical length of the core plate, and 𝑘 is the calculated wave number. Since the wave  

 

number has to be an integer for the purpose of choosing the equation for calculation, the  

 

wave number was chosen by a rounding-off method. These wave numbers are listed as  

 

𝑘𝑒𝑣𝑒𝑛 or 𝑘𝑜𝑑𝑑; 𝑡𝑐 is the total thickness of the core plates; 𝜇 is the frictional coefficient  

 

between the concrete and the steel core plates; 𝑒 is the air gap size; 𝐸𝑟−𝑐𝑜 is the reduced  

 

the modulus for the steel core, which was calculated in Chapter 4; 𝑤𝑡 is the width of the  

 

tie; 𝜃1 is the angle between strut and tie obtained from Eq. (5.21); 𝜃2 is the angle between  

 

strut and tie obtained from Eq. (5.29); 𝜃3 is the angle between strut and tie obtained from  

 

Eq. (5.19);  𝜃4 is the angle between strut and tie obtained from Eq. (5.27); the critical  

 

angle 𝜃𝑐𝑟 is obtained by choosing the maximum value of the two angles in Eqs. (5.21)  

 

and (5.29) or Eqs. (5.19) and (5.27). The actual angle between the strut and tie, 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 ,   
 

is obtained from the geometry of the BRB cross-section. 
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 When the value of the actual angle is close to the value of the critical angle, the  

 

core plates of the BRB buckle in the strong axis or a combination of strong axis and weak  

 

axis. However, when the actual angle between the strut and tie is much larger than the  

 

critical angle, weak-axis buckling occurs.    
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2
 

Table 5.1 

The critical angles for each specimen to determine if strong-axis buckling occurs 

 

Parameters Test1 Test3 Test5 Test6 Test7 Test8 Test9 

𝐼𝑐𝑜 , 𝑖𝑛
4 131.9 40.7 83.3 38.8 38.8 38.8 83.3 

𝐿𝑐−𝑐𝑜 , 𝑖𝑛 123 135 153 157 157 157 153 

𝑘 1.96 3.18 2.25 2.98 2.98 2.98 2.25 

𝑘𝑒𝑣𝑒𝑛 2 - 2 - - - 2 

𝑘𝑜𝑑𝑑 - 3 - 3 3 3 - 

𝑡𝑐, 𝑖𝑛 2 2 1 1 1 1 1 

𝜇 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

𝑒, in 0.063 0.063 0.063 0.063 0.063 0.063 0.063 

𝐸𝑟−𝑐𝑜 , 𝑝𝑠𝑖 2528316 2528316 2528316 2528316 2528316 2528316 2528316 

𝑤𝑡, in 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

(𝐿𝑠/2)𝑒𝑣𝑒𝑛, 𝑖𝑛 30.8 - 38.3 - - - 38.3 

(𝐿𝑠/2)𝑜𝑑𝑑 , 𝑖𝑛 - 22.5 - 26.2 26.2 26.2 - 

𝜃1,° 7.5 - 5.4 - - - 5.4 

𝜃2,° 0.4 - 0.1 - - - 0.1 

𝜃3,° - 7.7 - 7.9 7.9 7.9 - 

𝜃4,° - 0.5 - 0.2 0.2 0.2 - 

𝜃𝑐𝑟,° 7.5 7.7 5.4 7.9 7.9 7.9 5.4 

Casing size, in 12x12 12x12 12x12 10x10 10x10 10x10 12x12 

Width of the core, in 9.25 6.25 10 7.75 7.75 7.75 10 

𝜃𝑎𝑐𝑡𝑢𝑎𝑙 , ° 13.3 28.9 8.1 11.6 11.6    11.6 8.1 

Real buckling direction S W S W and S W W and S W 
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Figure 5.1 Bulging on the steel casing during test 1 

 

 

 
 

(a)  

 

                        
 

                           (b)                                                                          (c)  

 

Figure 5.2 Built-up of strut-and-tie model: (a) Cross-section of BRB in test 1, (b) Plain 

view of STM and (c) Three-dimensional view of STM 

Bulging 

Strut 

Tie 

Node 
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(a)  

 

 
 

(b)  

 

Figure 5.3 Definition of wavelength for strong-axis buckling on the core: (a) Overall 

view of the core and (b) One wavelength and half wavelength 

 

 

 
 

Figure 5.4 Forces distribution on node C 

 

 

 
 

Figure 5.5 Force distribution on node D 

 

  



 

 

 

 

CHAPTER 6 

 

 

ANALYTICAL SIMULATION OF BRBS AND CASING 

  

THICKNESS REQUIRED FOR LONG BRBS 

 

 

Testing full-size BRBs in the laboratory is costly and time consuming. Under  

 

optimal conditions, it takes four weeks to build and test one BRB. Analyzing BRBs can  

 

help reduce testing time and financial costs significantly. In addition, different parameters  

 

can be modeled and investigated to simulate BRBs of various core plate areas and  

 

lengths. 

 

In this section, simulation of nine BRB tests will be carried out using a general  

 

finite element program, Ansys. After the parameters of the material property for the BRB  

 

are determined by comparing the simulation results with the corresponding test results,  

 

the BRB model will be used to determine a relationship between BRB length and the  

 

casing thickness when the cross-sectional dimensions of the BRB and the steel core are  

 

given. The code requirements for the BRB casing design adopted in AISC 360 (2010) is  

 

used to help determine the initial thickness of the steel casing for the simulation.  

 

 

6.1 Material Property Determination for BRB Models in ANSYS 

 

6.1.1 Modeling 

 

 When steel material is loaded, the axial stress keeps increasing until the material  

 

yields. If the load is continuously applied on the steel material, the axial stress will move  
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out of the yielding surface to the plastic range. When plasticity occurs under cyclic loads,  

 

two types of material hardening models are involved: isotropic hardening and kinematic  

 

hardening. The isotropic hardening causes plastic homogeneousness in the material  

 

behavior, while the kinematic hardening causes plastic anisotropy in the material  

 

behavior.   

 

In the simulation, the model is simplified by only considering the BRB from  

 

connection plate to connection plate. Therefore, only the steel core plate, concrete, gap,  

 

and steel casing are involved in the finite element model. Element SOLID186 is used for  

 

the concrete, the steel core, and the steel casing, which is a higher order three- 

 

dimensional 20-node solid element that exhibits quadratic displacement behavior. The  

 

element TARGE 170 is used to represent various three-dimensional “target” surfaces for  

 

the associated contact elements. The element CONTA 174 is used to represent contact  

 

and sliding between three-dimensional “target” surfaces and a deformable surface, 

 

defined by this element. The gap between the concrete and the steel core is simulated by  

 

using elements TARGE 170 and CONTAC 174. The friction coefficient between the  

 

concrete and steel is assumed as 0.57 (Rabbat, et al. 1985). The normal penalty stiffness  

 

factor (FKN) varies in the different models, which is used to determine contact stiffness  

 

and penetration. The material property for each BRB component is listed in Table 6.1.  

 

Bilinear isotropic hardening material property is used for the concrete, and steel casing.  

 

The combination of multilinear isotropic and nonlinear kinematic models is used for the  

 

steel core. The nine BRBs tested are simulated in Ansys. The geometries for the nine  

 

BRB models are listed in Table 6.2. 
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6.1.2 Effect of FKN on the Hysteretic Loops 

 

FKN is the normal penalty stiffness factor, which is used to determine contact  

 

stiffness and penetration. The value FKN not only affects the convergence of the  

 

simulation, but also affects the shape of the hysteretic loop. The simulations are run with 

 

three different values of FKN: 0.01, 0.05, and 1 for the same model. The rest of the  

 

parameters are kept the same for the three simulations. The hysteretic loops for these  

 

three initial simulations for model C1 are shown in Figure 6.1. The hysteretic loops for  

 

FKN=0.01 are shown using a red dotted line. The hysteretic loops for FKN=0.05 are  

 

shown using a blue dashed line and the hysteretic loops for FKN=1 are shown using a  

 

solid brown line. It can be seen that the smaller the value of FKN, the squarer the  

 

hysteretic loops. The hysteretic loops get higher in the first and third quadrants and lower  

 

in the second and forth quadrants, as the value of FKN increases.  

 

 

6.1.3. Effect of the Stress-Strain Curve for Multilinear  

Isotropic Hardening Material on the Shape  

of the Hysteretic Loops 

 

The stress-strain curve for the core plate was provided by coupon tests from the  

 

manufacturer, but the ultimate strain was not provided. From the full-scale BRB test  

 

results, the strain in the core plates ranged from 2.9% to 4.2%. Therefore, the effect of the  

 

stress-strain curve of the core plates on the hysteretic loops is investigated.  

 

Two stress-strain curves for the core plates are shown in Figure 6.2. One is higher,  

 

as shown by the dotted line, and the other is lower, as shown by the solid line. The  

 

hysteretic loops for the BRBs obtained by using the two stress-strain curves are shown in  

 

Figure 6.3. The hysteretic loops from the low stress-strain curve is a solid line and those  

 

from the high stress-strain curve is a dotted line. It is obvious that the hysteretic loops are 
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high and narrow when the stress-strain curve of the multilinear isotropic material  

 

property is high. The hysteretic loops are low and wide when the stress-strain curve of the  

 

multilinear isotropic material property is low.  

 

 

6.1.4 The Effect of the Parameters for the Nonlinear  

Kinematic Hardening Material Property on  

the Shape of the Hysteretic Loop 

 

In a nonlinear kinematic hardening material model, C𝑖 is the tangent modulus for  

 

the 𝑖𝑡ℎ kinematic model, and 𝛾𝑖 is the decay for the 𝑖𝑡ℎ kinematic model. Figure 6.4  

 

shows the hysteretic loops obtained by running the same model with different values  

 

of C1. The hysteretic loops with C1 = 4025900  are shown by the solid line and the  

 

hysteretic loops with C1 = 6025900 are shown by the dotted line. It can be seen that the  

 

hysteretic loops with a large value of C1 are higher than the hysteretic loop with small  

 

value of C1 in the first and third quadrant of the hysteresis.     

 

Figure 6.5 shows the hysteretic loops obtained by running the same model with  

 

two different values of 𝑟1. The hysteretic loops with 𝑟1=500 are shown using a solid line  

 

and the hysteretic loops with 𝑟1=1000 are shown using a dotted line. It is obvious that the  

 

smaller the 𝑟1 value, the higher the hysteretic loops. The inner corners of the hysteretic  

 

loops in the second and fourth quadrants are smaller when 𝑟1 is larger.  

 

 

6.2 Comparison of the Simulation Results 

with Corresponding Test Results 

 

To obtain the proper parameters for the nine BRB models, the parameters are  

 

adjusted for the simulation according to the effects of those parameters on the shape of  

 

the hysteretic loops. Again, it is important to be able to model higher maximum  

 

compression than maximum tension in the models. The parameters are listed in Tables 
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6.3 through 6.11, which are used for the multilinear isotropic and nonlinear kinematic  

 

hardening material models for the core plates in the nine models. The FKN values used  

 

for each model are listed in the tables as well. From the comparison of the parameters for  

 

the specimens in Tables 6.3 through 6.11, the FKN is 0.05 for the BRBs with dual core  

 

plates. For the BRB with single core plate, FKN is 0.1 for the BRBS with core plates of  

 

10 in. x 1 in., and FKN is 0.2 for the BRB with core plates of 7.75 in. x 1 in. It can be  

 

seen that the smaller the cross-sectional area of core plate is, the higher FKN is. The  

 

hysteretic loops and the hysteretic energy dissipation obtained from the simulation are  

 

compared with those obtained from the corresponding tests to confirm that the selected  

 

parameters are appropriate.  

 

 

6.2.1 Comparison of the Hysteretic Loops 

 

The hysteretic loops from the simulation and tests of the nine specimens are  

 

shown in Figure 6.6.  The hysteretic loops from the simulation and corresponding ones  

 

from the tests are plotted in the same figure. All simulation results are shown in blue and  

 

the test results are shown in red. It can be seen that the shapes of the hysteretic loops  

 

from the simulations are very close to the test results.  

 

 

6.2.2 Comparison of Energy Dissipation 

 

The hysteretic energy dissipation from the simulations is compared with the  

 

corresponding test results. Tables 6.12 through 6.15 show the comparison of hysteretic  

 

energy dissipation, in which the hysteretic energy dissipation is computed for every two  

 

cycles. The difference between the simulation results and the test results is calculated by  

 

using Eq. (6.1). 
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                                        𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝐸𝑠𝑖𝑚−𝐸𝑡𝑒𝑠𝑡

𝐸𝑡𝑒𝑠𝑡
× 100%                                    (6.1) 

 

where 𝐸𝑠𝑖𝑚 is the hysteretic energy dissipation for every two cycles for the simulation,  

 

and 𝐸𝑡𝑒𝑠𝑡 is the hysteretic energy dissipation for every two cycles for the test. 

 

The difference in the cumulative hysteretic energy dissipation between simulation  

 

and test is below 6%. The hysteretic energy dissipation for the first two cycles obtained  

 

from the simulation is different from the corresponding test result because the hysteretic  

 

dissipation energy for the first two cycles is very small. The hysteretic models cannot  

 

predict all the failure modes you can have in a BRB, only the plastification of the core, so  

 

the hysteretic loops obtained from the simulation are not close to those obtained from the  

 

tests. Therefore, the hysteretic energy dissipation between the simulation and the test for  

 

the last two cycles shows a large difference as well. For the rest of the cycles, the  

 

hysteretic energy dissipation for the simulation is very close to that for the test result, and  

 

most of the differences between the simulation and the tests are below 10%. 

 

The hysteretic energy dissipation for each loading step (two loading cycles) is  

 

compared between simulation and test results in Figure 6.7. It can be seen that hysteretic  

 

energy dissipation obtained from the simulations is very close to that obtained from the  

 

tests for each cycle.   

 

By comparing the hysteretic loops and the hysteretic energy dissipation obtained  

 

from the simulation with those obtained from the tests, it can be seen that the parameters  

 

chosen for the simulation models are compatible. Those parameters will be used for the  

 

simulation of critical thickness of the casing for different length of BRBs.  
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6.3 Relationship between Thickness of Casing and BRB Length 

       

In this section, BRB models with the parameters chosen in Section 6.2 are  

 

simulated to find out a relationship between the thickness of the steel casing and the  

 

length of the BRB.  

 

       From Tables 6.3 through 6.11, it can be seen that even when the geometry of the  

 

BRB is the same, the parameters for the simulation models are different to achieve better  

 

fit to the test results, e.g, parameters for model C5 and C9. This is due to the many factors  

 

that are not known precisely and cannot be modeled, such as small differences in material  

 

properties such as concrete strength or steel yield stress, which vary from specimen to  

 

specimen; true thickness and extent of the debonding layer; as well as variations in  

 

boundary conditions. Therefore, the average of the parameters for the same geometry and  

 

configuration of the BRBs should be used for further BRB casing thickness simulations.  

 

        To make sure only one type of buckling model occurs in the core plates, strong- 

 

axis or weak-axis buckling, a 6.25 in.× 2 in. dual steel core is used for the cross-sectional  

 

dimension for the core plates in the simulation to make sure that only weak-axis buckling  

 

occurs to the BRBs. Hollow structural steel (HSS) square tubes are used for the steel  

 

casing. The cross-sections of 12 in. ×  12 in., 14 in. × 14 in., and 16 in. × 16 in. HSS  

 

square steel tubes are used. The available thickness for HSS sections listed in the AISC  

 

code is used in the simulation. Therefore, the thickness of the casing for the cross- 

 

sectional dimension of the 12 in. ×  12 in. HSS steel tube casing are 5/8 in., 1/2 in., 3/8  

 

in., 5/16 in., 1/4 in., and 3/16 in. The thickness of the casing for the cross-sectional  

 

dimension of the 14 in. ×  14 in. and 16 in. ×  16 in. HSS steel tubes are 5/8 in., 1/2 in.,  

 

3/8 in., 5/16 in. The length of the steel casing for a 20-ft.-, 25-ft.-, 30-ft.-, 40-ft.-, 50-ft.-,  
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and 60-ft.-long BRBs are simulated. The 84 combinations of casing cross-sectional  

 

dimension, casing thickness, and the length of the steel casing are simulated.  

 

      The FEM model uses the simplified geometry of the BRB, which consists of the  

 

steel core plates, and steel casing filled with concrete. Element SOLID 186 is used for the  

 

concrete, the steel core, the steel casing, and the connection plates. The gap between the  

 

concrete and the steel core is simulated by using elements TARGE 170 and CONTAC  

 

174. The material properties of the concrete, core plates, and the steel casing are the same  

 

as those used in simulation C3 in Section 6.1. The normal penalty stiffness factor, FKN,  

 

and friction coefficient are the same as those used in simulation C3 as well.  

     

To evaluate the thickness of the casing, monotonic loading simulation is used for  

 

this part of the research. Since the buckling of the casing only happens when the BRB is  

 

under compression, the monotonic compressive loading is applied on one end of the core  

 

plates and the other end is fixed. The displacement-control mode is used in the  

 

simulation. Both axial displacement and lateral displacement perpendicular to the  

 

longitudinal axis of BRB are applied on one end of the core plates.  

 

     A typical BRB frame before loading is shown in Figure 6.8(a). The interstory  

 

height is 𝐻𝑏 and the bay width is 𝑊𝑏. When a horizontal displacement ∆𝑚 is applied to  

 

the BRB frame, as shown in Figure 6.8 (b), the corresponding perpendicular  

 

displacement on the top end of the BRB is ∆𝑏𝑚; the perpendicular ratio  

 

(∆𝑏𝑚/√𝑊𝑏
2 + 𝐻𝑏

2) is expressed in Eq. (6.2) in terms of the horizontal interstory drift  

 

ratio, defined as the ratio of the horizontal displacement over the interstory height  

 

(∆𝑚/𝐻𝑏). AISC-341 (2010) requires the BRB to withstand the displacement which  

 

results from a 2% interstory drift ratio (∆𝑚/𝐻𝑏). Assuming that the bay width and the bay  
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height are the same, the perpendicular ratio on the top end of the BRB in Eq. (6.2) is 0.01  

 

when the interstory story drift ratio (∆𝑚/𝐻𝑏) is 2%.  

 

                                        
𝛥𝑏𝑚

√𝑊𝑏
2+𝐻𝑏

2
= (

𝛥𝑚

𝐻𝑏
) [

1

1+(
𝑊𝑏
𝐻𝑏
)
2]                                           (6.2) 

      

This perpendicular ratio on the top end of the BRB is the lateral displacement  

 

applied on the core plate in the simulation, which is along the weak axis of the core  

 

plates. The lateral displacement applied on the model with the length of 20 ft., 25 ft., 30  

 

ft., 40 ft., 50 ft., and 60 ft. was 2.4 in., 3 in., 3.6 in., 4.8 in., 6.0 in. and 7.2 in.,  

 

respectively. 

    

Watanabe et al. (1988) suggested that the buckling force resisted by the casing  

 

should be greater than 1.5 times the yield force of the core plate, to prevent global  

 

buckling of the casing. Therefore, the axial displacement which can make the axial force  

 

of the BRB 1.5 times the yield force of the core plates is applied on each BRB. The BRB  

 

model was simulated with 1.5 times the yield force for the core plates to obtain the axial  

 

displacement. The axial displacement applied on the model with the length of 20 ft., 25  

 

ft., 30 ft., 40 ft., 50 ft., and 60 ft. was 8.4 in., 10.5 in., 12.6 in., 16.8 in., 21.0 in., and 25.2  

 

in., respectively.  

 

        The ratio of horizontal force to axial force on the loading surface of the core plate  

 

is considered a form of eccentricity. The eccentricity versus the BRB length for casing  

 

cross-sections of 12 in. × 12 in., 14 in. × 14 in., and 16 in. × 16 in. are plotted in  

 

Figures 6.9 through 6.11, respectively. Tables 6.16 through 6.18 list the corresponding  

 

data for Figures 6.9 through 6.11. The wall thicknesses of 3/16 in., 1/4 in., 5/16 in., and  

 

3/8 in. for the 12 in. × 12 in. casing are not working for BRB length of 60 ft. since the  
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corresponding models always buckle before the simulations end. The plot of force vs.  

 

displacement and the deformation are shown in Figure 6.12 for the 60-ft-long BRB with  

 

a cross-sectional dimension of 12 in. × 12 in. × 0.1875 in. for the casing. For the same  

 

reason, the wall thickness of 3/16 in. for 12 in. × 12 in. casing is not working for 50-ft.- 

 

long BRB. From Figures 6.9 through 6.11, it can be seen that the eccentricity that can be  

 

tolerated decreases as the length of BRB increases. For BRBs with the same length and  

 

same cross-section of the casing, the tolerable eccentricity increases when the wall  

 

thickness increases.  From the relationship between the eccentricity and the length of  

 

BRB, the minimum wall thickness of casing can be found for certain length of BRB  

 

without global buckling occurring on the casing when the performance of BRB is  

 

required to meet the 2% of interstory drift requirement of AISC-341 (2010). 

 

       The relationship between the casing wall thickness and the BRB length according  

 

to Watanabe et al. (1988) is plotted in Figure 6.13. 12 in. × 12 in., 14 in. × 14 in., and 16  

 

in. × 16 in. are used for the cross-section of the casing. According to AISC, wall  

 

thicknesses of HSS for the cross-section of 12 in. × 12 in. are 3/16 in., 1/4 in., 5/16 in.,  

 

3/8 in., 1/2 in., and 5/8 in., and wall thicknesses of HSS for the cross-section of the 14 in.  

 

× 14 in. and 16 in. × 16 in. are 5/16 in., 3/8 in., 1/2 in., and 5/8 in., respectively.  

 

Therefore, any thicknesses below 3/16 in. and above 5/8 in. for casing cross-section of 12  

 

in. × 12 in. are plotted in dotted line, and any thicknesses below 5/16 in. and above 5/8  

 

in. for casing cross-section of 14 in. × 14 in. and 16 in. × 16 in. are plotted in dotted line  

 

as well. 

          

For example, when the BRB is 40 ft. long, and the cross-section of the casing is  

 

12 in. × 12 in., the required wall thickness is 1/4 in. according to the simulation result but  
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5/8 in. according to Watanabe et al. (1988). It can be seen that compared to the wall  

 

thickness obtained in the simulation and that obtained from Watanabe et al. (1988), BRBs  

 

with a given length need thinner steel casing according to the simulation result, and  

 

thicker steel casing according to Watanabe et al. (1988). Therefore, the theory of  

 

Watanabe et al. (1988) about the wall thickness of steel casing is more conservative.  
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Table 6.1 

The material property for each BRB component 

 

Parts Material property 

Concrete Bilinear isotropic hardening, E=3605 ksi, Tangent modulus is 0 

Core Combination of the multilinear isotropic and the nonlinear 

kinematic 

steel casing Bilinear isotropic hardening, E=29 msi, Tangent modulus is 

210ksi. 

 

 

Table 6.2 

The simulation models  

 

Model # Test # Casing size, in. Core plate, in. 

C1 Test1 12x12x0.25 9.25x2x123 

C2 Test2 12x12x0.25 9.25x2x123 

C3 Test3 12x12x0.25 6.25x2x135 

C4 Test4 12x12x0.25 9.25x2x123 

C5 Test5 12x12x0.25 10x1x153 

C6 Test6 10x10x0.25 7.75x1x157 

C7 Test7 10x10x0.25 7.75x1x157 

C8 Test8 10x10x0.25 7.75x1x157 

C9 Test9 12x12x0.25 10x1x153 

 

 

Table 6.3 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C1 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=30600 psi 𝜎𝑦=30600 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 30600 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 37800 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.05   
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Table 6.4 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C2 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=29000 psi 𝜎𝑦=29000 psi 

parameters value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 29000 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 39000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.05   

 

 

Table 6.5 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C3 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=33000 psi 𝜎𝑦=33000 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 30600 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 37800 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.05   

 

 

Table 6.6 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C4 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=29000 psi 𝜎𝑦=29000 psi 

parameters value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 29000 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 39000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.05   
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Table 6.7 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C5 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=40000 psi 𝜎𝑦=40000 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 40000 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 46000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 50000 𝜀3 0.1 

𝐶4 505610 𝑟4 25 𝜎4 70000 𝜀4 1 

𝐶5 53510 𝑟5 0 FKN= 0.1   

 

 

Table 6.8 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C6 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=36000 psi 𝜎𝑦=36000 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 36000 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 44000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 48000 𝜀3 0.1 

𝐶4 505610 𝑟4 25 𝜎4 70000 𝜀4 1 

𝐶5 53510 𝑟5 0 FKN= 0.2   

 

 

Table 6.9 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C7 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=36000 psi 𝜎𝑦=36000 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 36000 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 44000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 48000 𝜀3 0.1 

𝐶4 505610 𝑟4 25 𝜎4 70000 𝜀4 1 

𝐶5 53510 𝑟5 0 FKN= 0.2   
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Table 6.10 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C8 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=30600 psi 𝜎𝑦=30600 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 30600 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 38000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.2   

 

 

Table 6.11 

The parameters for combination of multilinear isotropic and 

nonlinear kinematic in model C9 

 

Nonlinear kinematic Multilinear isotropic 

𝜎𝑦=30600 psi 𝜎𝑦=30600 psi 

parameters Value parameters value parameters value parameters value 

𝐶1 4025900 𝑟1 500 𝜎1 30600 𝜀1 0 

𝐶2 3545700 𝑟2 375 𝜎2 38000 𝜀2 0.05 

𝐶3 1602900 𝑟3 120 𝜎3 41800 𝜀3 0.1 

𝐶4 305610 𝑟4 25 𝜎4 59800 𝜀4 1 

𝐶5 43510 𝑟5 0 FKN= 0.1   

 

 

Table 6.12 

The energy dissipation for the BRB obtained in the  

simulation and in the tests1, 2 and 4 

 

Step Test1 

PB750 

Sim.C1 Diff.% Test2 

PB750 

Sim. Diff.% Test4 

PW750 

Sim. Diff.

% 

1 120 132 10 325 359 10 117 197 68 

2 2341 2041 -13 2097 2073 -1 2573 2482 -4 

3 6462 6376 -1 6005 6504 8 7204 7738 7 

4 11690 11825 1 10993 11900 8 13249 13810 4 

5 17405 17326 0 16511 17354 5 20035 20128 0 

6 25923 25169 -3 24865 25234 1 27428 27199 -1 

7 34390 34349 0 20097 20022 0 11960 9006 -25 

8 15688 22031 40       

total 114019 119249 5 80893 83446 3 82566 80560 -2 
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Table 6.13 

The energy dissipation for the BRB  

obtained in the simulation  

and the test 3 

 

Step Test3 

PB500 

Sim.C2 Diff.% 

1 145 224 54 

2 1342 1442 7 

3 3952 4363 10 

4 7336 8014 9 

5 11098 11696 5 

6 16746 16990 1 

7 16488 11411 -31 

total 57107 54139.89 -5 

                                          

 

Table 6.14 

The energy dissipation for the BRB obtained in 

the simulation and the tests 5 and 9 

 

Step Test5 

PW400 

Sim.C3 Diff.% Test9 

PW400 

Sim.C3 Diff.% 

1 468 199 -58 497 288 -42 

2 2093 1749 -16 2005 1608 -20 

3 5421 5279 -3 4943 4696 -5 

4 9378 9432 1 8450 8329 -1 

5 13729 13885 1 12634 12193 -3 

6 18650 18725 0 17600 16538 -6 

7 11588 11405 -2 16345 15203 -7 

total 61327 60674 -1 62474 58855 -6 
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Table 6.15 

The energy dissipation for the BRB obtained in the  

simulation and the tests 6 through 8 

 

Step Test6 

PB315 

Sim. Diff.

% 

Test7 

PB315 

Sim. Diff.

% 

Test8 

PB315 

Sim. Diff.

% 

1 326 192 -41 268 279 4 282 222 -21 

2 1573 1418 -10 1441 1431 -1 1410 1340 -5 

3 4062 4271 5 3947 4273 8 3733 3904 5 

4 7163 7639 7 6961 7639 10 6643 6915 4 

5 10908 11256 3 10559 11256 7 9991 10080 0 

6 16585 16301 -2 15804 16301 3 11836 12238 -4 

7 8946 9139 2 1675 1561 -7    

total 49563 50215 1 40654 42741 5 33895 34697 2 
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Table 6.16. 

The ratio of lateral force to axial capacity of BRB for casing 

cross-sectional dimension of 12 in. × 12 in. 

 

Wall 

thickness, in. 

Length of 

BRB, ft. 

Lateral 

force, Kips 

BRB Capacity, 

Kips 

Ratio of lateral force 

to BRB Capacity, (%) 

3/16 

20 0.115 621.845 0.019 

25 0.053 621.632 0.008 

30 0.026 621.440 0.004 

40   - 

50   - 

60   - 

1/4 

20 0.385 620.165 0.062 

25 0.063 619.946 0.010 

30 0.033 619.850 0.005 

40 0.013 619.666 0.002 

50 0.006 619.501 0.001 

60   - 

5/16 

20 1.112 627.357 0.177 

25 0.074 627.130 0.012 

30 0.041 627.033 0.006 

40 0.015 626.855 0.002 

50 0.007 626.486 0.001 

60   - 

3/8 

20 1.945 628.631 0.309 

25 0.088 628.397 0.014 

30 0.048 628.296 0.008 

40 0.018 628.090 0.003 

50 0.008 628.040 0.001 

60   - 

1/2 

20 3.491 634.122 0.550 

25 0.120 633.884 0.019 

30 0.061 633.779 0.010 

40 0.022 633.615 0.004 

50 0.010 633.586 0.002 

60 0.006 633.322 0.001 

5/8 

20 5.133 629.154 0.816 

25 8.859 628.899 1.409 

30 0.072 628.791 0.011 

40 0.026 628.580 0.004 

50 0.012 628.569 0.002 

60 0.006 628.447 0.001 
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Table 6.17 

The ratio of lateral force to axial capacity of BRB for casing 

cross-sectional dimension of 14 in. × 14 in. 

 

Wall 

thickness, in. 

Length of 

BRB, ft. 

Lateral 

force, Kips 

BRB Capacity, 

Kips 

Ratio of lateral force 

to BRB Capacity, (%) 

5/16 

20 7.011 633.884 1.106 

25 1.766 633.607 0.279 

30 0.093 633.479 0.015 

40 0.034 633.289 0.005 

50 0.016 633.308 0.002 

60 0.008 632.962 0.001 

3/8 

20 8.484 634.081 1.338 

25 2.642 633.794 0.417 

30 0.111 633.660 0.017 

40 0.040 633.463 0.006 

50 0.018 633.453 0.003 

60 0.009 633.273 0.001 

1/2 

20 8.012 635.226 1.261 

25 4.311 634.918 0.679 

30 0.848 634.776 0.008 

40 0.051 634.571 0.000 

50 0.022 634.548 0.003 

60 0.012 634.443 0.002 

5/8 

20 13.886 637.960 2.177 

25 5.977 637.639 0.937 

30 1.877 637.492 0.295 

40 0.062 637.284 0.010 

50 0.026 637.265 0.004 

60 0.015 637.143 0.002 
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Table 6.18 

The ratio of lateral force to axial capacity of BRB for casing 

cross-sectional dimension of 16 in. × 16 in. 

 

Wall 

thickness, in. 

Length of 

BRB, ft. 

Lateral 

force, Kips 

BRB Capacity, 

Kips 

Ratio of lateral force 

to BRB Capacity, (%) 

5/16 

20 15.837 633.422 2.500 

25 7.263 633.093 1.147 

30 2.710 632.941 0.428 

40 0.069 632.726 0.011 

50 0.030 632.725 0.005 

60 0.017 632.574 0.003 

3/8 

20 18.116 629.012 2.880 

25 7.263 633.093 1.147 

30 3.686 628.535 0.586 

40 0.078 628.321 0.012 

50 0.035 628.340 0.006 

60 0.019 628.237 0.003 

1/2 

20 22.415 626.746 3.576 

25 11.541 626.403 1.842 

30 5.598 626.252 0.894 

40 0.298 626.028 0.048 

50 0.046 626.003 0.007 

60 0.023 625.910 0.004 

5/8 

20 26.548 607.150 4.373 

25 17.903 607.234 2.948 

30 7.670 605.883 1.266 

40 1.127 605.452 0.186 

50 0.054 605.545 0.009 

60 0.026 605.441 0.004 
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Figure 6.1 Effect of FKN on the shape of the hysteretic loops 

 

 

 
 

Figure 6.2 Stress-strain curves for isotropic multilinear material property 



106 

 

 

 

 
 

Figure 6.3 Hysteretic loops with two different stress strain curves 

 of multilinear material property 

 

 

 
 

Figure 6.4 Effect of C on the hysteretic loops 
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Figure 6.5 Effect of 𝛾 on the hysteretic loops 
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               (a)                                             (b)                                           (c)  

 

 
 

                     (d)                                           (e)                                            (f)  

 

 
 

                      (g)                                           (h)                                             (i)  

 

Figure 6.6 Comparison of the hysteretic loops for the simulation and the test results 

(simulation is in blue and test is in red): (a) Test 1, (b) Test 2, (c) Test3, (d) Test 4, 

  (e) Test 5, (f) Test 6, (g) Test 7, (h) Test 8 and (i) Test 9 
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(a) 

 

 
 

(b)  

 

 
 

(c)  

 

Figure 6.7 Hysteretic energy comparison for simulation result and test result by 

loading step for the 9 tests: (a) Test 1, (b) Test 2, (c) Test3, (d) Test 4, 

  (e) Test 5, (f) Test 6, (g) Test 7, (h) Test 8 and (i) Test 9 
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(d)  

 

 
 

(e)  

 

 
 

(f)  

 

Figure 6.7 Continued 
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(g)  

 

 
 

(h)  

 

 
 

(i)  

 

Figure 6.7 Continued 
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  (a)                                            (b)  

 

Figure 6.8 Drift of a representative BRB frame: 

 (a) Before loading and (b) After loading 

 

 

 
 

Figure 6.9 Ratio of lateral force to BRB capacity vs. casing length  

for the BRB with cross-section of 12 in. ×12 in. 
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Figure 6.10 Ratio of lateral force to BRB capacity vs. casing length 

 for the BRB with cross-section of 14 in. × 14 in. 
 

 

 
 

Figure 6.11 Ratio of lateral force to BRB capacity vs. casing length 

 for the BRB with cross-section of 16 in. × 16 in. 
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(a)  

 

 
 

(b)  

 

Figure 6.12 Buckling performance of a BRB with casing of 60 ft. × 12 in. × 12 in. ×
 0.1875 in.: (a) Plotting of axial force vs. axial displacement and (b) Deformation  

and Von misses stress distribution  

 

 

 
 

Figure 6.13 Relationship between wall thickness of casing and  

the BRB length (Watanabe et al. 1988)  
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CHAPTER 7 

 

 

ANALYSIS OF GUSSET PLATES 

 

 

         In the laboratory tests, the BRBs were connected to the load frame by using  

 

gusset plates.  The nine tests were carried out to find the performance of the BRBs with  

 

connection plates perpendicular to the core plates. To allow the BRBs to perform to their  

 

capacity, the gusset plates and loading frame should not buckle before the BRB fails.  

 

During test 4, one top gusset plate buckled in the out-of-plane direction as shown in  

 

Figure 3.9 (d). Since the gusset plate buckled, the system failed before the BRB itself  

 

reached its capacity.  

 

      In actual buildings, BRBs cannot play the role of a “fuse” to protect the frame  

 

during an earthquake if the gusset plates fail before the BRBs. Therefore, designing the  

 

gusset plate plays an important role in making sure that the BRBs can fully function to  

 

their full capacity during an earthquake.   

 

      Two different dimensions of gusset plates were used in the laboratory tests. The  

 

first set of gusset plates are called “large gusset plates” and the second set are called  

 

“small gusset plates” due to the difference in their dimensions. Large gusset plates were  

 

used for tests 1 through 4. The top large gusset plates buckled in test 4. After this event,  

 

small gusset plates were used for the remaining five tests. Due to this fact, tests 3, 4, and  

 

5 are chosen for further study.  

 

  In this section, the load capacity of the two sets of gusset plates is analyzed   
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following AISC (2011). The design load capacity of the gusset plates is compared to the  

 

applied load, which is the maximum tension and maximum compression obtained during  

 

the tests. The safety factor for each gusset plate during tests 3, 4, and 5 is calculated. In  

 

addition, the finite element method is implemented to analyze the deformation of the  

 

gusset plates during tests 3, 4, and 5.   

 

 

7.1 Code Requirements for Gusset Plate Design 

 

       According to the AISC-325 (2011), gusset plates shall be able to resist tension,  

 

shear, block shear rupture, compression yielding, and compression buckling. During the  

 

tests, only tensile and compressive forces, and moment were applied. Therefore, only the  

 

tensile and compressive capacity of the gusset plates is calculated in this section. The  

 

calculation method for both design strength (LRFD) and allowable strength (ASD) is  

 

described in this section.  

 

 

7.1.1 Gusset Plates in Tension 

 

      Gusset plates subjected to axial tension shall be investigated for two conditions:  

 

yielding of the gross section and fracture of the net section. The factored resistance, 𝑅𝑟,  

 

for gusset plates in tension shall be taken as the least of the values given by yielding and  

 

fracture resistance.  

 

For tensile yielding of gusset plates 

 

                                                             𝑅𝑟 = 𝜙𝑦𝐹𝑦𝐴𝑔                               (7.1) 

                    

For tensile rupture of gusset plates 

 

                                                            𝑅𝑟 = 𝜙𝑢𝐹𝑢𝐴𝑛𝑈                                    (7.2) 

 

where 𝜙𝑦is the resistance factor for tension yielding, 𝜙𝑦 = 0.9 (𝐿𝑅𝐹𝐷) and 𝜙𝑦 = 
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1/1.67 (𝐴𝑆𝐷); 𝐹𝑦 is the yield strength of the plates; 𝐴𝑔 is the gross cross-sectional area  

 

of the gusset plates; 𝜙𝑢 is the resistance factor for tension fracture, 𝜙𝑢 = 0.75 (𝐿𝑅𝐹𝐷)  
 

and  𝜙𝑢 = 1/2 (𝐴𝑆𝐷); 𝐹𝑢 is the tensile strength of the gusset plates; 𝐴𝑛 is the net cross- 

 

sectional area of the gusset plates, which is defined in the AISC specification; 𝑈 is the  

 

shear lag factor, which is determined in AISC (2011) Table D3.1;  𝑈 = 1 for all tension  

 

members where the tension load is transmitted directly to each of the cross-sectional  

 

elements by fasteners or welds; 

 

   For the determination of the gross and net section areas, the effective gross width  

 

of the gusset plate in tension may be determined by the Whitmore method. In this  

 

method, the effective width is measured across the last row of bolts, which is furthest  

 

away from the core, in the gusset plates under consideration. The effective width is bound  

 

on either side by the closer of the nearest adjacent plate edges or lines constructed  

 

starting from the external fasteners within the first row and extending from these bolts at  

 

an angle of 30 degrees with respect to the line of action of the axial force. Figure 7.1  

 

provides an example for determining the effective width in tension in accordance with the  

 

Whitmore section method. 

 

 

7.1.2. Strength of Gusset Plates in Compression 

 

      To resist compression yielding and buckling, the strength of the gusset plates in  

 

compression has to be calculated. The factored resistance, 𝑅𝑟, for gusset plates in  

 

compression shall be taken as the least of the values given by yielding and buckling  

 

resistance. 

 

The factored resistance, 𝑅𝑟, can be calculated by using Eq. (7.3) for 𝐾𝐿/𝑟 ≤ 25;  

 

when 𝐾𝐿/𝑟 > 25, the provisions of Chapter E of AISC-325 (2011) apply.                                                                                                                                                                                                                                                                                                             
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                                                                 𝑅𝑟 = 𝜙𝑐𝐹𝑦𝐴𝑔                                                 (7.3) 

 

where 𝜙𝑐 is the resistance factor for compression, 𝜙𝑐 = 0.9(𝐿𝑅𝐹𝐷) and 𝜙𝑐 = 

 

1/1.67(𝐴𝑆𝐷). 
 

  The effective width of the idealized compression member may be determined in  

 

accordance with the Whitmore method. The unbraced length, L, may be determined as  

 

the average of three distances (𝐿1,  𝐿2, 𝐿3). 𝐿1 and 𝐿3 are the distances from each of the  

 

ends of the Whitmore width to the first row of fasteners in the closest adjacent member,  

 

measured parallel to the line of action of the compressive axial force. When the  

 

Whitmore width enters into the adjacent member, the associated distance at that end  

 

should be set to zero. 𝐿2 is the distance from the last row of fasteners in the compression  

 

member under consideration to the first row of fasteners in the closest adjacent member,  

 

measured along the line of action of the compressive axial force. Figure 7.2 gives an  

 

example of determining 𝐿1,  𝐿2 , 𝐿3 and the effective width for a gusset plate in  

 

compression.  

 

      The effective length factor, K, can be determined according to Table 7.1. When   

 

lateral sway of gusset plates is possible, the value of K can be taken from Table 7.1 case  

 

(d), (e) or (f), depending on the buckling shape. When lateral sway of gusset plates is not  

 

possible, the effective length factor, K, for gusset plates can be taken from Table 7.1 for  

 

cases (a), (b), or (c).   

 

 

7.2 Calculation of the Design Strength (LRFD) and 

Allowable Strength (ASD) on the Gusset Plates 

 

      There are two dimensions for the gusset plates involved in the tests, as shown in  

 

Figure 7.3.  The larger gusset plate as shown in Figure 7.3(a) is used for the calculation  
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example. The calculation for the small gusset plate as shown in Figure 7.3 (b) is attached  

 

in the Appendix.  

 

 

7.2.1 Calculation of the Tensile Yielding Resistance 

 of the Large Gusset Plate 

 

      Figure 7.4 shows the effective Whitmore width for the large gusset plate. Since  

 

the ideal Whitmore width is larger than the width of the gusset plate, the effective  

 

Whitmore width is only taken as the section inside the actual gusset plate provided  

 

(Ibrahim 2009), as shown by the red arrow in Figure 7.4.   

 

        The width of the widest section of the gusset plate is the summation of 8
13

16
 in.,   

 

12
1

8
 in., and 8

13

16
 in., which is 29.75 in. The distance between the widest section of the  

 

gusset plate and the bottom row of the bolts is the difference between (8 × 2.5 + 2) in.  

 

and 18
7

16
 in., which is 3.5625 in. Therefore, the distance between the effective Whitmore  

 

length and the bottom of the gusset plate is (14
3

16
− 3.5625), which is 10.625 in.  

 

Because the two triangles on the bottom of the figure are similar triangles, the edges of  

 

these two triangles are proportional. The effective Whitmore length can be obtained by  

 

Eq. (7.4).   

 

                                                
𝑒𝑓𝑓𝑒𝑡𝑖𝑣𝑒 𝑊ℎ𝑖𝑡𝑚𝑜𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

29
3

4

=
10.625

14
3

16

                     (7.4) 

 

So the effective Whitmore length = 22.28 in.  
          

The yield strength of the gusset plates is 50 𝑘𝑠𝑖. The thickness of the gusset plate  

 

is 1.5 in. Therefore, the gross area of the gusset plate subject to tension and the tensile  

 

yielding capacity of the gusset plates are calculated as follows: 

 

                                                   𝐴𝑔 = 1.5 × 22.28 = 33.42 𝑖𝑛.2                                  (7.5) 
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                              𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑦𝐹𝑦𝐴𝑔 = 0.9 × 50 × 33.42 = 1503.9 𝑘𝑖𝑝𝑠           (7.6) 

 

                              𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑦𝐹𝑦𝐴𝑔 =
1

1.67
× 50 × 33.42 = 1000.6 𝑘𝑖𝑝𝑠             (7.7) 

 

The data obtained in Eqs. (7.6) and (7.7) are listed in the first row of Table 7.2.  

 

 

7.2.2 Calculation of the Tensile Rupture Resistance  

of the Large Gusset Plate 

 

      The tensile rupture resistance of the gusset plate can be calculated using Eq. (7.2).  

 

The net width of gusset plate for rupture is the effective Whitmore length deducting the  

 

total width of the bolt holes. In the tests, 1
1

8
 in. diameter bolts were used. The ultimate  

 

strength of the gusset plate is 65 𝑘𝑠𝑖. The net area of the gusset plate subjected to tensile  

 

rupture and the tensile rupture resistance of the gusset plate can be calculated as follows: 

 

                    𝐴𝑛 = 1.5 × [22.28 − 2 × (1 +
1

8
)] =  1.5 × 20.03 = 30.045 𝑖𝑛2           (7.8) 

 

             𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑢𝐹𝑢𝐴𝑛𝑈 = 0.75 × 65 × 30.045 × 1 = 1464.69 𝑘𝑖𝑝𝑠            (7.9) 

 

                 𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑢𝐹𝑢𝐴𝑛𝑈 =
1

2
× 65 × 30.045 × 1 = 976.46 𝑘𝑖𝑝𝑠                (7.10) 

  

The data obtained in Eqs. (7.9) and (7.10) are listed in the second row of Table 

7.2. 

 

 

7.2.3 Calculation of the Compression Resistance 

of the Large Gusset Plate 

 

       One end of the gusset plate was fixed and the other end of the gusset plate was  

 

connected with the connection plates. And the system of the BRB and gusset plates were  

 

tested vertically in the lab. According to the observation during test 4, the deformation of  

 

the gusset plate under compression is shown in Figure 7.5, which is similar to the  

 

deformation when the column is in compression. In this case, the effective length factor k  

 

value for design should be chosen as 1.2, according to Table 7.1.  
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       Since both ends of the Whitmore width extend outside the gusset plate, the  

 

associated distance at both ends should be set to zero. Therefore, 𝐿1 = 𝐿3 = 0, as shown  

 

in Figure 7.6. The distance from the last row of the bolts in to the bottom of the gusset  

 

plate, 𝐿2, is 10.625 in., which was obtained in Section 7.2.1. The slenderness of the  

 

gusset plate, 𝐾𝐿/𝑟, can be calculated as follows:     

 

                                                  𝑟 = √
𝐼𝑔

𝐴𝑔
= √

22.28×1.53/12

22.28×1.5
= 0.433                            (7.11) 

 

                                                  𝐿 =
𝐿1+𝐿2+𝐿3

3
=

0+10.625+0

3
= 3.54 𝑖𝑛.                        (7.12) 

 

                                                               
𝐾𝐿

𝑟
=

1.2×3.54

0.433
= 9.81                                      (7.13) 

         

Since 𝐾𝐿/𝑟 ≤ 25, the compressive resistance of the gusset plate subjected to  

 

yielding and buckling can be calculated by using Eq. (7.3). The compressive resistance of  

 

the gusset plate is calculated as follows: 

 

                     𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑐𝐹𝑦𝐴𝑔 = 0.9 × 50 × 22.28 × 1.5 = 1503.9𝑘𝑖𝑝𝑠         (7.14) 

 

                     𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑐𝐹𝑦𝐴𝑔 =
1

1.67
× 50 × 22.28 × 1.5 = 1000.62 𝑘𝑖𝑝𝑠        (7.15) 

         

Data obtained in Eqs. (7.14) and (7.15) are listed in the third row of Table 7.2.  

 

Similar calculations for the small gusset plates are shown in the Appendix. A comparison  

 

of the resistance of the large gusset plate and the applied load for tests 3 and 4 is listed in  

 

Table 7.2. A comparison of the resistance of the small gusset plate and the applied load  

 

for test 5 is listed in Table 7.3. The applied loads for tension and compression are the  

 

maximum tension and compression obtained during the tests, respectively. The safety  

 

factor is the ratio of the resistance to the applied load. It can be seen that the safety factor  

 

of the large gusset plate in test 3 is larger than 1.00. The safety factor of the large gusset  

 

plate in test 4 and that of the small gusset plate in test 5 are similar and are less than 1.00  
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for tensile yielding, tensile rupture, and compression. The small gusset plate in test 5  

 

even has a smaller safety factor in compression than the large gusset plate in test 4.  

 

However, the large gusset plate in test 4 buckled, while the small gusset plate in test 5  

 

was stable. Further research using the finite element method is done to explain this  

 

phenomenon.  

 

 

7.3 FEM Simulation of the Top Gusset Plate 

with Connection Plates in ANSYS 

 

        Due to the out-of-plane buckling which occurred at the top gusset plate in test 4,  

 

the top gusset plate with partial connection plates is the focus of this section.  

 

    The gusset plate and connection plates for tests 3, 4, and 5 are simulated using  

 

FEM with ANSYS. In tests 3 and 4 the large gusset plate was used, and in test 5 the small  

 

gusset plate was used. The dimensions of the large and small gusset plates are shown in  

 

Figure 7.3. The element SOLID 186 is used for both connection plates and gusset plates.  

 

Bilinear isotropic hardening material properties are used for both the gusset plate and  

 

connection plates.  

 

   The connection plates and the gusset plate share the same nodes where they come  

 

into contact because there was no relative movement between the gusset plate and  

 

connection plates during the tests. The bolts or welds are ignored since the boundary  

 

conditions between the gusset plates and connection plates are simplified. The connection  

 

plates are simplified as rectangular plates in the model. The details of the models for the  

 

combination of the gusset plate and connection plates are listed in Table 7.4.   

    

During the tests, axial cyclic loading was applied to the BRBs through the  

 

actuator and load cell to the gusset plates. Theoretically, the whole BRB system,  
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including the load cell, gusset plate, and BRB, experienced the same amount of load as  

 

recorded by the data acquisition system. This cyclic load is applied on the gusset plate in  

 

the simulation as the input load. A value of 1% of the axial load will also be applied on  

 

the gusset plate in the weak-axis direction as eccentricity. The three models for tests 3, 4,  

 

and 5 with the load applied are shown in Figure 7.7. 

 

 

7.4 Comparison among the Simulation Results 

 

           The deformation of the gusset plate and the connection plates for the three models  

 

is shown in Figure 7.8. The Von Misses stress distributions for these three models are  

 

shown in Figure 7.9.  The deflections of the gusset plate are -0.055 in, -0.178 in., and  

 

0.018 in. in the simulation for tests 3, 4, and 5, respectively. In the simulation, stress  

 

concentration occurred on the top of the connection plate in the model #GC2 of test 4 and  

 

the connection plates deformed significantly. 

 

           The actual test load (1357.66 kip) applied to the model for test 4 was applied  

 

much greater than that for the model of test 3 (870.82 kips) and test 5 (861.67 kips); this  

 

is one of the reasons why the model for test 4 has larger deflection than the other two  

 

models. Besides the load, the model for test 4 has 0.75-in.-thick connection plates, the  

 

model for test 3 has 1.5-in.-thick connection plates, and the model for test 6 has 1-in.- 

 

thick connection plates. This is another reason why the model for test 4 has the largest  

 

deflection and the gusset/connection plates failure compared to the other two models.   

 

Comparing the safety factor listed in Tables 7.2 and 7.3, it can be seen that even though  

 

the small gusset plate used in test 5 had the smallest safety factor for compression  

 

resistance, the deflection of this model during the simulation had the smallest deflection.  

 

When calculating the resistant capacity of the gusset plates, only the geometry of the 
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gusset plates was considered. However, in the simulation, both connection plates and the  

 

gusset plate are involved. That means that geometry of the connection plates has an  

 

influence on the stiffness of the gusset/connection plate end system of load transferred to  

 

the BRB.  

         

 To obtain the effect of the connection plates on the compression resistance of the  

 

gusset/connection plate end system, a gusset plate with a larger thickness is simulated.  

 

Based on the connection plate for test 4, a 1.5-in.-thick connection plate is used instead of  

 

the 0.75-in.-thick connection plate, and the remaining dimensions of the connection  

 

plates remain the same. Therefore, the dimensions of the connection plates for the new  

 

model are 1.5 in. × 10 in. × 24 in. The same load is used for this model as that for the  

 

previous model for test 4. The deformation of the gusset plate and connection plates for  

 

this model is shown in Figure 7.10. The deflection of the gusset plate for this model is – 

 

0.063 in., which is one third of deflection of the gusset plate in the model which has 0.75-  

 

in.-thick connection plates, and the connection plate does not buckle in the simulation.  

 

        From the simulation results, it can be seen that the dimensions of both the gusset  

 

plate and the connection plates determine the out-of-plane buckling behavior of the  

 

gusset plate. When the applied load is smaller than or equal to the capacity of the  

 

gusset plate, the gusset plate can resist the deflection by itself. When the applied load is  

 

larger than the capacity of the gusset plate, the connection plates can help to increase the  

 

effective stiffness of the gusset plate to reduce the deflection and prevent out-of-plane  

 

buckling.  
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Table 7.1 

The effective length factor, K (Table C-A-7.1. ANSI/AISC 360-10 2010) 

 

Buckled shape (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0 

Design K value 0.65 0.80 1.0 1.2 2.1 2.0 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

1
2
6
 

Table 7.2 

The safety factors for large gusset plates 

 

 Resistance Test3 Test4 

 LRFD 

(kip) 

ASD 

(kip) 

Maximum 

Applied load 

(kip) 

Safety 

Factor 

LRFD 

Safety 

Factor 

ASD 

Maximum 

Applied load 

(kip) 

Safety 

Factor 

LRFD 

Safety  

Factor 

ASD 

Tensile  yielding 1503.9 1000.6 769.8 2.0 1.3 1151.0 1.3 0.9 

Tensile rupture 1464.7 976.5 769.8 1.9 1.3 1151.0 1.3 0.9 

Compression 1503.9 1000.6 870.8 1.7 1.2 1357.7 1.1 0.7 

 

 

Table 7.3 

The safety factors for small gusset plate 

 

 Resistance Test 5 

 LRFD 

(kip) 

ASD 

(kip) 

Applied load 

(kip) 

Safety Factor 

 LRFD 

Safety Factor 

ASD 

Tensile yielding 865.7 576.0 656.4 1.3 0.9 

Tensile rupture 801.0 534.0 656.4 1.2 0.8 

Compression 865.7 576.0 861.7 1.0 0.7 

                                                                                                 

 

Table 7.4 

Details of the models simulated for the gusset plate and connection plate combination 

 

Model No. Dimension for gusset 

plate 

Dimension for connection plate 

t ×w× L, in. 

Deflection on the top of the 

gusset plate, in. 

GC#1 Large 1.5×11.375×19 -0.055 

GC#2 Large 0.75×10×24 -0.178 

GC#3 Small 1×9×13 0.018 
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Figure 7.1 Example for using Whitmore method to determine  

the effective width in tension 

 

 

 
 

 

Figure 7.2 Example for showing L1, L2, L3 and the effective width  

when the gusset plate is in compression 

 

 

     
 

(a)                                                            (b)  

 

Figure 7.3 Dimensions of both large and small gusset plates:  

(a) Large and (b) Small 

Effective width 

30˚ 

Effective width 

30˚ 

𝐿1 

𝐿2 

𝐿3 
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Figure 7.4 Effective Whitman width for the large gusset plate 

 

 

 
 

Figure 7.5 Deformation of the gusset plate under compression 

 

 

 
 

Figure 7.6 Distance 𝐿2 
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(a) 

 

 
 

                                                            (b) 

 

          
 

(c)  

 

Figure 7.7 Geometry of gusset plates and connection plates for three models  

used in ANSYS: (a) Test 3, (b) Test 4 and (c) Test 5  
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       (a)  

 

 
 

(b) 

 

        
 

(c) 

 

Figure 7.8 Deformation for gusset plates and connection plates in simulation 

 for tests 3 through 5: (a) Test 3, (b) Test 4, and (c) Test 5  
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(a)  

 

 
 

                                                               (b)  

 

 
 

                                                                (c)  

 

Figure 7.9 Von Misses stress distribution on gusset plates and connection plates in 

simulation for tests 3 through 5: (a) Test 3, (b) Test 4, and (c) Test 5  

 

 



132 
 

 

 

 
 

Figure 7.10 Deformation for large gusset plate and connection plates  

with the dimension of 1.5 in. × 10 in. × 24 in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

CHAPTER 8 

 

 

SUMMARY AND CONCLUSIONS 

 

 

         Nine full-scale new-generation buckling restrained braces (BRBs) were tested in  

 

this investigation; they differ from conventional BRBs in that they utilize straight steel  

 

plates for the core and connection plates oriented perpendicular to the core to attach the  

 

BRB to gusset plates. This results in efficient use of the steel material and economy in  

 

manufacturing. Based on the fact that the connection plate is perpendicular to the single  

 

core or dual core plates, it is much easier to build welded, pinned, or bolted connections  

 

compared with conventional BRBs for which the connection plate and core plates are one  

 

piece.  

 

        The hysteretic loops of the nine full-scale BRBs exhibited repeatable and stable  

 

behavior with positive incremental stiffness. There was no rupture, brace instability, or  

 

brace end connection failure up to displacements corresponding to 2% story drift; the  

 

strain achieved in the core plates ranged from 2.89% to 4.16%, which is more than ten  

 

times of the yielding strain of the steel. For each cycle reaching a deformation greater  

 

than the BRB yield displacement, the maximum tension forces were greater than the  

 

nominal strength of the steel core. In other words, the strain hardening adjustment  

 

factor, 𝜔, is greater than 1.0. In all tests, the ratio of maximum compression to maximum  

 

tension force (the compression strength adjustment factor, β) was less than 1.30. Both  

 

adjustment factors meet requirement of AISC-341 (2010).     



134 
 

 

 

In compression, larger cross-sectional area of the core plate helps to prevent  

 

buckling. In tension, increasing the cross-sectional area of the core plate can increase its  

 

resistance. Therefore, the cumulative hysteretic energy dissipation of the full-scale BRBs  

 

was found to increase with increasing cross-sectional area of the steel core plates.  

 

Specimens with a smaller area of steel core plates were efficient with respect to  

 

cumulative hysteretic energy dissipation per unit cross-sectional area of the steel core.  

 

Compared to conventional BRBs, new generation BRBs with a similar steel core area  

 

dissipated similar amounts of cumulative hysteretic energy. Full-scale BRBs in element  

 

tests subjected to axial load dissipated more hysteretic energy than BRBs in subassembly  

 

tests because the BRB tested in subassembly tests subjected to an initial moment; in  

 

addition to axial load, a bending moment was applied at the BRB ends. The reduced  

 

energy dissipated by the BRBs in subassembly tests is evidence that the latter are more  

 

severe than element tests. Regardless of strong-axis, weak-axis, or both strong- and  

 

weak-axis buckling, new generation BRBs performed in a satisfactory manner and met  

 

AISC-341 (2010) requirements.  

         

Equations for the buckling force of the core plates and contact force between the 

 

concrete and the core plates are derived when strong-axis buckling happens to the core  

 

plates. The equations for the buckling force are verified with the FEM and the test results.  

 

        The mode of core plates buckling is controlled by the geometric relationship  

 

between BRB steel casing and steel core plates and is explained with the aid of a strut- 

 

and-tie model of the BRB cross-section. The general equations for the critical angle  

 

between the strut and the tie are derived, which triggers strong-axis buckling. The critical  

 

angle expressions are different for an odd wave number and an even wave number. The  
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calculated critical angles for the specimens are compared with the real angles obtained by  

 

the geometry of the cross-section of the BRBs. When the actual angle is close to the  

 

critical angle, either strong-axis or a combination of strong-axis and weak-axis buckling 

 

occurs in the core plates. When the real angle is much larger than the critical angle, weak- 

 

axis buckling occurs in the core plates. Simply increasing the thickness of the steel casing  

 

can make it more stable. Therefore, when the distance between the outer-edge of the core  

 

plate to the inner-edge of the steel casing (thickness of concrete) decreases, increasing the  

 

thickness of the steel casing wall can help to prevent steel casing yielding, and bulging. 

 

      The nine BRB specimens tested with cyclic load are simulated with FEM using  

 

ANSYS.  The hysteretic loops and the hysteretic energy dissipation are compared to  

 

those obtained in the tests. The parameters for the model which simulated the specimen in  

 

test 3 are used for further simulation to determine the casing thickness for different  

 

lengths of the BRB. In the simulation, the axial load applied is 1.5 times the yielding  

 

force of the core plate to satisfy design recommendations. The transverse drift of BRBs  

 

applied in the simulation is the transverse displacement corresponding to the 2%  

 

interstory drift. To create the buckling performance of the BRB, the eccentricity is  

 

needed. The relationship between the eccentricity and the length of the BRB is obtained  

 

for certain cross-sectional dimensions of the casing. From this relationship, the minimum  

 

wall thickness of the steel casing can be found for certain length of the BRB without  

 

global buckling; this is valid when the performance of the BRB meets the 2% of  

 

interstory drift requirement of AISC-341 (2010). 

 

        Out-of-plane buckling of the gusset plate was observed in test 4. According to the  

 

calculation for the tensile and compressive resistant capacity of the gusset plates  
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following the AISC code (2011), the gusset plate used in test 3 is safe, while the gusset  

 

plates used for test 4 and 5 are not safe. However, out-of-plane buckling of the gusset  

 

plate only occurred in test 4. Therefore, the FEM is adopted to investigate further. The  

 

models of the combined gusset plate and connection plates used in tests 3 through 5 are  

 

simulated with cyclic load with 1% eccentricity. The models for test 3 and 5 had very  

 

small deflection, which was 0.055 in. and 0.018 in., respectively. The model for test 4 had  

 

a very large deflection (0.178 in.), causing out-of-plane buckling of the gusset/connection  

 

plate system.  After increasing the thickness of the connection plate from 0.75 in. to 1.5 in  

 

for test 4, the model only had 0.06 in. deflection and no buckling. Therefore, the factors  

 

affecting the occurrence of out-of-plane buckling of the gusset plate include the  

 

maximum load applied on the system, the combined stiffness of the gusset plate and the  

 

connection plates, and the thickness of the connection plate. When the maximum load  

 

applied and the dimensions of the gusset plates are given, increasing the thickness of the  

 

connection plates can help prevent the out-of-plane buckling of the gusset plate.  

 

      Overall, test results verified that BRBs with connection plates perpendicular to  

 

core plates performed very well under cyclic load. The derived equation can reasonably  

 

predict axial compressive force for a given BRB. The critical angle can tell which  

 

direction of the core plate buckles for a given BRB. The critical thickness of steel casing  

 

for certain length of BRB can be found in the figures obtained from simulation results.  

 

When designing gusset plate, counting in connection plates can save material.  

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

CALCULATION OF THE DESIGN STRENGTH (LRFD) 

 

AND ALLOWABLE STRENGTH (ASD) OF 

 

THE SMALL GUSSET PLATES  
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A.1 Calculation of the Tensile Resistance of the Gusset Plate 

 

       Figure A.1 shows that effective Whitmore width for the small gusset plate, which  

 

is the summation of 2
1

2
 in, 2

1

2
 in, and double of 11 × tan(30°). The effective Whitmore  

 

length is obtained from Eq. (A.1).  

 

       Effetive Whitmore length = 2 × 2
1

2
+ 2 × (3 × 3) tan(30°) = 15.39 in.         (A.1) 

 

The effective Whitmore length will be used to calculate the gross area of the gusset  

 

plate subject to tension and compression and net area of the gusset plate subjected to tensile  

 

rupture. 

 

 

A.1.1 Calculation of Tensile Yielding Resistance  

of the Small Gusset Plate 

 

      The yield stress of the gusset plates is 50 𝑘𝑠𝑖. The thickness of the gusset plate is  

 

1.25 in. Therefore, the gross area of the gusset plate subject to tension, and the tensile  

 

yielding capacity of the gusset plate are calculated as follows:  

 

                                                 𝐴𝑔 = 1.25 × 15.39 = 19.24 𝑖𝑛.2                                 (A.2) 

 

                          𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑦𝐹𝑦𝐴𝑔 = 0.9 × 50 × 19.24 = 865.69 𝑘𝑖𝑝𝑠              (A.3) 

 

                           𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑦𝐹𝑦𝐴𝑔 =
1

1.67
× 50 × 19.24 = 575.97 𝑘𝑖𝑝𝑠               (A.4) 

 

The data obtained from Eqs. (A.3) and (A.4) are listed in the first row of Table 

7.3. 

 

 

A.1.2 Calculation of Tensile Rupture Resistance 

of the Small Gusset Plate 

 

        The tensile rupture resistance of the gusset plate can be calculated using Eq. (7.2).  

 

The net width of the gusset plate for rupture is the effective Whitmore length, deducting  

 

the total width of the bolt holes. In the tests 1
1

8
 in. bolts were used. The ultimate strength 
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of the gusset plate is 65 𝑘𝑠𝑖. The net area of the gusset plate subjected to tensile rupture  

 

and the tensile rupture resistance of the gusset plate can be calculated as follows: 

 

                𝐴𝑛 = 1.25 × [15.39 − 2 × (1 +
1

8
)] =  1.25 × 13.14 = 16.43 𝑖𝑛2            (A.5) 

 

                  𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑢𝐹𝑢𝐴𝑛𝑈 = 0.75 × 65 × 16.43 × 1 = 800.96 𝑘𝑖𝑝𝑠          (A.6) 

 

                        𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑢𝐹𝑢𝐴𝑛𝑈 =
1

2
× 65 × 16.43 × 1 = 533.98 𝑘𝑖𝑝𝑠            (A.7) 

 

The data obtained from Eqs. (A.6) and (A.7) are listed in the second row of Table 

7.3. 

 

 

A.2 Calculation of the Compression Resistance  

of the Small Gusset Plate 

 

       The deformation of the gusset plate under compression is shown in Figure A.2. In  

 

this case, the k value should be chosen as 1.2 according to Table 7.1.  

 

       Figure A.3 shows the distance of 𝐿1, 𝐿2, and  𝐿3. Since the total depth of this  

 

gusset plate is 22.25 in. and the distance from the last row of bolts to the top section of  

 

the gusset plate is 11 in., the distance from the last row of bolts to the bottom section of  

 

the gusset plate is 11.25 in., which is the length 𝐿2. The horizontal distance from the  

 

center of the bottom row of bolts to one edge of the gusset plate equals the length of 𝐿2  

 

due to isosceles right triangle, which is 11.25 in. Therefore, the horizontal distance  

 

between the right corner of the Whitmore width and the right edge of the gusset plate is  

 

(11.25-15.39/2) in., which is 3.555 in. Due to the geometrical symmetry, the lengths of 𝐿1  

 

and 𝐿3 are the same, which is 3.555 in.  

 

        The slenderness of the gusset plate,𝐾𝐿/𝑟, can be calculated as follows: 

 

                                             𝑟 = √
𝐼𝑔

𝐴𝑔
= √

15.39×1.253/12

15.39×1.25
= 0.361                                (A.8) 

 

                                          𝐿 =
𝐿1+𝐿2+𝐿3

3
=

3.555+11.25+3.555

3
= 6.12 𝑖𝑛.                       (A.9) 
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𝐾𝐿

𝑟
=

1.2×6.12

0.361
= 20.34                                            (A.10) 

          

 Since 𝐾𝐿/𝑟 ≤ 25, the compressive resistance of gusset plates subject to yielding  

 

and buckling can be calculated by using Eq. (7.3). The compressive resistance of the  

 

gusset plate is calculated as follows: 

                     

                   𝑅𝑟(𝐿𝑅𝐹𝐷) = 𝜙𝑐𝐹𝑦𝐴𝑔 = 0.9 × 50 × 15.39 × 1.25 = 865.69 𝑘𝑖𝑝𝑠      (A.11) 

 

                  𝑅𝑟(𝐴𝑆𝐷) = 𝜙𝑐𝐹𝑦𝐴𝑔 =
1

1.67
× 50 × 15.39 × 1.25 = 575.97 𝑘𝑖𝑝𝑠         (A.12) 

 

The data obtained from Eqs. (A.11) and (A.12) are listed in the third row of Table 

7.3. 
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Figure A.1 Effective Whitmore length 

 
 

 
 

Figure A.2 The deformation of the gusset plate under compression 
 

 

 
 

Figure A.3 The distance of 𝐿1, 𝐿2, and  𝐿3 

 

30˚ 
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