
HIGH LEVEL OPTIMIZATIONS IN COMPILING
PROCESS DESCRIPTIONS TO ASYNCHRONOUS CIRCUITS

GANESH GOPALAKRISHNAN1

ganesh<Dcs. Utah. edu

VENKATESH AKELLA2

akella<Dcs. Utah. edu

Department of Computer Science
University of Utah

Salt Lake City, UT 84112, USA

UUCS-92-019 -a

A bstract
Asynchronous/Self-Timed designs are beginning to attract attention as promising means o f dealing with

the complexity o f modern VLSI technology. In this paper, we present our views on why asynchronous systems
matter. We then present details o f our high level synthesis tool SHILPA that can automatically synthesize
asynchronous circuits from descriptions in our concurrent programming language, hopCP. We outline some
o f the high level communication abstractions available in hopCP. We illustrate how these abstractions are
realized in the asynchronous circuits generated by SHILPA. We then present a series o f examples that present
many o f the high level optimization strategies used by SHILPA. Some o f these optimizations aim to speed up
the generated circuits by avoiding un-necessary waiting. Others synthesize components that are much easier
to realize in a variety o f technologies. We also discuss some o f the tradeoffs possible between optimizations
and timing constraints.

A version o f this paper has been submitted to the Journal o f VLSI and Signal Processing: Special Issue on
Asynchronous Design

1 Supported in part by NSF Award MIP-8902558
2 Supported in part by a Graduate Fellowship from the University o f Utah

Formal Aspects o f VLSI Research Group
University o f Utah, Department o f Computer Science

H I G H L E V E L O P T I M I Z A T I O N S I N C O M P I L I N G P R O C E S S
D E S C R I P T I O N S T O A S Y N C H R O N O U S C I R C U I T S

GANESH GOPALAKRISHNAN* (ganesh@cs.utah.edu)
VENKATESH AKELLAt (akella@cs.utah.edu)
University of Utah .
Dept, of Computer Science
Salt Lake City, Utah 84112 -

K ey w ord s : Asynchronous VLSI Design, Self-timed Systems, High Level Synthesis, Concurrent Program­
ming, Formal Methods in Design

A b s tra c t . Asynchronous/Self-Timed designs are beginning to attract attention as promising means of
dealing with the complexity o f modern VLSI technology. In this paper, we present our views on why
asynchronous systems matter. We then present details of our high level synthesis tool SHILPA that can
automatically synthesize asynchronous circuits from descriptions in our concurrent programming language,
hopCP. We outline some o f the high level communication abstractions available in hopCP. We illustrate how
these abstractions are realized in the asynchronous circuits generated by SHILPA. We then present a series
o f examples that present many o f the high level optimization strategies used by SHILPA. Some o f these
optimizations aim to speed up the generated circuits by avoiding un-necessary waiting. Others synthesize
components that are much easier to realize in a variety of technologies. We also discuss some o f the tradeoffs
possible between optimizations and timing constraints.

1 In t r o d u c t io n

Recently, there has been a revival of interest in asynchronous digital circuits. There are
many compelling reasons for seriously considering asynchronous circuits as alternatives for
synchronous circuits. From the point of view of designing large VLSI chips, it is becoming
increasingly hard to distribute high frequency clocks that have low rise- and fall-times [1].
Since all the enabled gates in a synchronous circuit switch nearly simultaneously on every
clock edge, synchronous circuits have higher peak power requirements, and so they place
a higher burden on power and ground lines. Asynchronous circuits do not suffer from this
problem. Due to the increasing levels of integration, asynchronous interfaces (that existed
outside the chip in the days of lower integration) have started moving inside single chips [2].
Since asynchronous circuits are almost always incrementally expandable due to their use of
explicit completion signals, they have shorter design (and re-design) times. From the point

‘ Supported in part by NSF Award MIP 8902558
tSupported in part by a University o f Utah Graduate Fellowship

mailto:ganesh@cs.utah.edu
mailto:akella@cs.utah.edu

2 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

of view of performance, in many applications asynchronous circuits have shown the ability
to run at speeds close to the combinational propagation times [3].

We refer the reader to [4] and [5, Chapter 7] for a lucid account of the issues in asynchronous
circuit design, and why asynchronous circuits matter. For a survey of recent works on
asynchronous design, see [6] and [7]. In the former, several recent design techniques are
illustrated on one design example. In the latter, a thorough account of the fundamentals of
gate-style and switch-style asynchronous circuits is presented, followed by a survey of recent
works.

Approaches for Specifying Asynchronous Circuits

There are two prevalent approaches for specifying asynchronous computations: the con­
current programming approach, and the state machine approach. Many designers view asyn­
chronous circuit design as concurrent programming, where the computation to be imple­
mented is written in a high level concurrent HDL that is then compiled into circuits. This
approach is followed by [8], [9, 10], [11], and also by us. Others specify the computation to be
implemented using various automata, or in various trace models. Examples in this category
include classical works [12, 13], as well as more recent works [14, 15, 16, 17].

Generally speaking, the concurrent programming approach is well suited for high level
synthesis while the state machine approach is well suited for low level and asynchronous
state machine synthesis.

Approaches for Realizing Asynchronous Circuits

There are also two classes of approaches for realizing asynchronous circuits in hardware.
The basic problem in asynchronous circuit design is to translate high level problem descrip­
tions onto networks of transistors. Since a transistor exhibits so many useful circuit proper­
ties (switching, ratioing, charge storage, threshold voltage drop to help sense the presence of
metastability, to name a few) [5, 18], it is very difficult to directly compile high level problem
descriptions into efficient transistor networks. Presently, therefore, designers only attempt
to compile high level problem descriptions into something akin to “intermediate code” . This
intermediate code takes the form of either Boolean gates or macromodules.

Boolean gates implement Boolean functions in the usual manner. Macromodules, on the
other hand, implement complex combinational or sequential functions. Macromodules come
both in the synchronous and in the asynchronous variety. Some examples of synchronous
macromodules are barrel-shifters, precharged ALU circuits, shift-registers with processing,
stacks, etc. [5, 18]. Asynchronous macromodules implement functions such as rendezvous,
arbitration, procedure call and return, and control merging.

Both gates and macromodules throw away much of the power that exists in “raw” tran­
sistors. Boolean gate based approaches translate the design problem into equivalent state
transition specifications, perform state assignment and minimization, and finally realize the

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 3

circuit using Boolean gates. Many approaches using macromodules view the given design
problem as a concurrent programming problem— more specifically, one of mapping a given
concurrent program into an interconnection of macromodule programs (which are a priori
given). This approach is generally used for high level synthesis. There are also many efforts
in which macromodules are used directly for realizing state machines (i.e. for low level syn­
thesis). Some examples are [14, 16]. Some of these distinctions are also rapidly blurring, with
the use of complex gates that directly realize multi-input multi-output Boolean functions as
macromodules.

Very little published work exists that makes a fair comparison o f these techniques. This
is promising area for future research. In our system, we employ macromodules as targets, at
present.

The Case for Mixed Style Designs

In the long run, it appears that mixed synchronous/asynchronous systems will get em­
ployed increasingly. Classical solutions to this problem involve the use of synchronizers;
however, synchronizers only minimize the chances for failure due to metastability; they do
not totally avoid the chances of failure due to metastability. Another class of solutions that
totally avoids failure due to metastability involves the use of stoppable clocks [5, 19, 20, Chap­
ter 7] or Q-modules [21] that use a special flip-flop called the Q-flop. These solutions require
the use of special components whose designs are not widely known or widely available, yet.

From the point of view of making evolutionary changes to the way in which digital designers
design their circuits, it seems very important that this avenue of research be pursued.

About the Rest of the Paper: High Level Optimizations

There are many issues to be addressed before asynchronous circuits are widely adopted.
(There are also many good reasons why they should be widely adopted!) Space restrictions
prevent us from surveying this area any further. In this paper, we address our own recent
efforts in this area, hoping to illustrate some of these issues more clearly.

As said before, we follow the programming view of asynchronous circuit design. For
specifying asynchronous computations, we have developed a concurrent HDL called hopCP,
which is a process + functional language. We specify system descriptions in hopCP into
macromodules (which are currently realized in Field Programmable Gate Arrays) using our
circuit compiler SHILPA1. The emphasis of this paper will be the high level optimizations
employed in SHILPA.

By the term “high level optimizations” , we mean the ability to write succinct and ex­
pressive specifications, and the ability to compile these specifications directly into efficient
asynchronous circuits. High level optimizations are important for several reasons. Directly

1 “System for the High Level synthesis o f Process descriptions to Asynchronous circuits.”

expressing concurrency in asynchronous system descriptions is difficult and error prone. It
would be much more preferable to write relatively more sequential code, and employ power­
ful high level abstractions, and let the system automatically discover concurrent evaluation
possibilities and generate efficient circuit implementations. This is what are trying to do in
our approach.

In section 2, we provide an overview of the suite of tools that constitute-the hopCP
system: a parser that compiles descriptions in the process + functional language hopCP
into intermediate form; a process composition tool that infers the behavior of a network
of asynchronous processes; a flow-analyzer that detects sharing opportunities; a compiled
code simulator that can efficiently simulate hopCP descriptions; and a circuit compiler that
compiles the intermediate form into asynchronous circuits.

We illustrate SHILPA on two examples. In the first (section 3), we illustrate the com­
pilation of synchronization barriers and multicast channels. Also discussed axe resource
shaxing, flow analysis based optimization, and efficient compilation of mutually exclusive
communication-only guards. In section 4, we present an example of transforming a purely
functional description into a pipelined process + functional description in hopCP. This allows
us to derive pipelined circuits from hopCP. Concluding remarks are provided in section 5.

2 h o p C P S y s te m O v e r v ie w

Control intensive ICs pose several significant challenges to designers who wish to describe
them at multiple levels of abstraction, simulate their descriptions efficiently, and synthe­
size circuits using sound semantics preserving transformation techniques starting from their
descriptions. To help meet these challenges, we have developed a simple multi-paradigm
HDL called hopCP, an efficient compiled code functional simulator called CFSIM, and an
asynchronous circuit compiler SHILPA that takes hopCP descriptions and generates circuit
netlists that can, at present, be technology mapped onto Actel Field Programmable Gate
Arrays.

hopCP is a CSP-style language that provides constructs for expressing hardware behavior
clearly and succinctly. It can also serve as a language for specifying existing synchronous and
asynchronous off-the-shelf components. It supports a variety of communication primitives.
For system-level description of behavior, it provides the features of barrier synchronization
and multicast. Often subsystems in a hardware system communicate through “wire assign­
ments” . Wire assignments interactions cannot be directly specified in CSP-like languages. A
precise notion of wire assignments is included in hopCP. For details on hopCP, see [22, 23].

A procedure has been developed to conduct flow analysis on hopCP descriptions. Basically
this procedure determines if two actions a and b are always guaranteed to be serially ordered
or are potentially concurrent. This information is valuable in compiling guards, as illustrated
in section 3. Also this information helps in determining whether wire assignments and

4 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 5

the usage of the assigned wire values (which happen without explicit synchronization) are,
indeed, race free (by virtue of being indirectly ordered by other synchronous communication
actions used in the specification). The same set of flow-analysis procedures also help in
detecting opportunities for resource sharing. For details, see [24].

A formal verification methodology for hopCP is yet to be developed. Currently, hopCP
descriptions are validated through the simulation tool CFSIM, by compiling th6m into a
concurrent derivative of the Standard ML programming language [25], called Concurrent
ML (CML) language [26] (mainly because CML provides support for implementing many
of the constructs of hopCP) and running these CML descriptions. CFSIM generates fairly
efficient simulators: we have successfully simulated an Intel 8251 USART (a process with
six concurrent sub-processes with more than 160 high-level control states and countless data
states— see technical report enclosed) over 32,000 synchronizations and 60,000 function calls
(for word packing, unpacking, etc.) in about a minute, including garbage collections. The
CFSIM environment also allows one to write tester processes that serve as an environment
specification, and help exercise various modes of behaviors of the system under test with
great flexibility.

The SHILPA high level synthesis system takes behavioral descriptions in hopCP and pro­
duces a netlist for the Actel FPGA, supported by the VIEWlogic tools. Except for commands
and options that guide the synthesis in various directions, SHILPA produces circuits auto­
matically. hopCP descriptions are initially translated into an intermediate-form based on
hypergraphs called HFG. SHILPA then applies action refinement, which is a technique for
transforming HFGs into asynchronous hardware by a series of transformation rules. Action
refinement is characterized by incremental resource allocation and control decomposition.

The major contributions of SHILPA when compared to the published works of Brunvand
[9, 10], van Berkel [11], and Martin [8] (which are the most closely related works to ours)
are the following. First of all, the source language hopCP is equipped with shared variables,
broadcast channels, and barrier synchronization. Consequently, it is more expressive than
their input languages (CSP/Occam like languages). SHILPA incorporates numerous high
level optimizations. Flow-analysis based optimizations in SHILPA can analyze a given pro­
cess in the context of its environment, and detects those actions that are serially ordered
in the process, and those which are potentially concurrent. This information can be used
to detect concurrent read/write accesses to asynchronous ports (which are erroneous), and
also help share resources among serial actions. In this sense, SHILPA is closely related to
traditional synchronous high level synthesis tools designed along the lines of Camposano,
Parker, Ku and De Micheli, for example [27].

SHILPA supports the compilation of barrier synchronization and multicast. It supports
the speculative style of evaluating mutually exclusive guards. For mutually exclusive guards,
this results in circuits that are more area efficient and potentially faster. More importantly,
it does not require the use of components such as the Q-SELECT as in [9] or ARBITRATION

6 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

module Guardex
. . .type and channel declarations...
behavior

(P <= (a? -> b? -> P)
1 1 1 (b? -> a? -> P)) •
1 1
(Q <= (c? -> a! -> q)

1(d? -> b! -> q))
end '

Figure 1: Example Illustrating Shaxed Channels with Speculative Evaluation

WITH TEST AND SET as in [28] that are very hard to realize in the FPGA technology, as
they involve the use of analog circuitry such as the interlock [29]. (However, not all guards
are mutually exclusive, and for those that aren’t, we use the exact same circuit used in [9].)
These will be discussed in section 3.

SHILPA has the ability to handle circuits involving both computations and communica­
tion. Since hopCP is a process + functional language, it allows tail recursive computations
to be elegantly expressed. We show that tail recursive specifications can be transformed
to process descriptions that evaluate tail recursive loops in a pipelined fashion (“software
pipelining”). We illustrate these ideas in section 4 on the design of a series-parallel multiplier.

The SHILPA system comes with a macro-module library of self-timed parts built using
Actel macros (an extension of the library developed by Brunvand [30]). All the circuits
shown in this paper axe automatically generated from the hopCP compilation system which
is interfaced to the Viewlogic™ CAD tools.

3 D e s ig n E x a m p le 1: S p e c u la t iv e G u a r d E v a lu a t io n w i t h S h a r ­
in g

In this section, we present a simple example (Figure 1) that illustrates the kinds of issues
one faces in compiling concurrent process descriptions into hardware. Though simple, this
example illustrates several inter-related issues: the implementation of communication chan­
nels; the implementation of guarded commands (in the sense of the CSP language [31]); the
effect of resource sharing; and speculative evaluation.

Two concurrent processes P and Q are described in the syntax of hopCP. Process P employs
the channels a? and b? while Q employs a ! , b !, c?, and d?. Communcations through these
channels follows the rendezvous discipline— the sender and the receiver wait for each other,

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 7

finish the communication, and then proceed.
Our implementation of the channels follows the two-phase transition style signaling conven­

tion [4]: a request transition (zero to one or one to zero) is acknowledged by an acknowledge
transition. The active [8] channels (whose names end with a !) are implemented by generat­
ing the request and awaiting the acknowledge, while passive [8] channels are implemented by
awaiting request and generating acknowledge. Notice the difference between channels and
communication actions on channels: “channels” denote physical resources through which
communication takes place, while communication actions are particular usages of channels
for effecting a certain communication. In the fragment

p <= a? -> b? -> P
b? -> a? -> P

the two a? are two distinct occurrences of passive communication on the same channel
hardware dedicated for channel a, and similarly the two b? denote distinct occurrences of
passive communication on channel b.

P’s behavior is as follows. It awaits a communication on channel a? or channel b? (the
“or” is indicated by I). (The above is an example of a guarded command.) Depending on
which request of the guarded command arrives first, P commits to that choice, and then
proceeds to perform another communication coming sequentially afterwards. Sequencing is
indicated by ->. For example, if a? arrives first in the guard, P commits to it, and then
awaits the b? coming sequentially after the a?, and finally recurses back to state P.

Q’s behavior may be similarly understood, except that after selecting between one of c?
and d?, it generates an a! or a b !, which match the a? and the b? awaited by P. In other
words, Q is the environment for P.

We present the compilation of the example in Figure 1 through a series of steps. We first
show how simple control flow constructs (sequencing and iteration) are compiled. We then
show how communication channels are compiled. Next, we show how general communication
only guarded commands can be compiled. We then show how flow analysis can be conducted
to detect mutually exclusive guards (called mutex guards, for short). We present a circuit for
mutex guards. Finally, we show how sharing can be handled. We then put together all the
above ideas to get the circuit corresponding to Figure 1. We then present an analysis of the
circuit obtained, comparing it against alternative ways of compiling this circuit.

3.1 C om pilation o f Sim ple C ontrol Flow C onstructs

In the hopCP system, a set of actions is compiled into a circuit called an action block. An
action block has an explicit initiate signal and an explicit complete signal. Data (if any are

8 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

Figure 2: Compilation of Sequencing

involved) must be presented to action blocks bundled [4] with control signals. Compilation
of the sequencing operator -> is shown in Figure 2.

Tail recursive computations are compiled by using the completion signal of the body to
re-initialize the body, using a MERGE element (as is shown in figure ,3). In general, a MERGE
element is employed whenever control can enter a state from more than one place.

3.2 Compilation of Communication Channels

SHILPA, the high level synthesis sub-system of hopCP, first analyzes the usage pattern
of every channel. A hopCP specification consists of several sequential processes that run in
parallel. For example, in module Guardex, P and Q are sequential processes, and I I denotes
that they can run in parallel.

Every communication channel used in a hopCP specification is used in the active mode
by exactly one sequential process; all other sequential processes can use this channel only
in the passive mode. (Other sequential processes are, of course, not required to use this
channel.) If a channel is associated with data, then the data is supplied by the active user of
the channel. Those channels that are used passively by exactly one process are implemented
by allocating a C-ELEMENT that implements a two-way rendezvous. Channels that are used
passively by more than one process are implemented by using either multicast or barrier
synchronization, depending upon whether the channel is associated with data (multicast) or
not (barrier synchronization). These two ways of compiling channels will now be illustrated.

For the sake of definiteness, consider the following hopCP specification (only the behavior

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 9

section is shown):

module barriersync
. . .type and channel declarations...
behavior

(P <= l i a! -> P) •
I I
(Q <= a? -> q)
1 1
(R <= a? -> R) •

end

In this fragment, channel a is used actively by P, and passively by Q and R. All of P, Q, and
R are sequential processes. In other words, they have no “internal parallelism” . They are
described using only sequencing and tail recursion. Channel a is implemented using barrier
synchronization, with the following execution semantics. Both Q and R await P to send a
request on a ! . When the request arrives, Q and R send their own acknowledge signals. All
these acknowledges are synchronized using a completion tree before being fed back as the
acknowledge of P; this very signal also forms the initiate signal for the computation in Q
and R that come after a?. In this way, time alignment between P, Q, and R is achieved. The
circuit in figure 3 shows the circuit automatically generated from the above hopCP fragment.
Barrier synchronization is a handy paradigm for modeling and implementing many parallel
algorithms [32].

Now, consider the following hopCP fragment

module multicast
. . .type and channel declarations...
behavior

(P C x l] <= a !x l -> P [x l])
I I
(q[x2] <= a?y -> q[y])
I I
(R[x3] <= a?z -> R[z])

end

The automatically generated circuit corresponding to this program is shown in figure 4. In
this example, process P sends the value of the variable x l on channel a, which is received by
Q and R. We allow the processes Q and R to latch the values sent as soon as they arrive at the
synchronization point. Process P is blocked at its synchronization point till a l l the receivers
(in this case Q and R) have latched the value sent by P. However, the circuit in Figure 4 is
still sub-optimal because Q and R are not allowed to proceed as soon as they have latched

10 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

Figure 3: Compilation of Barrier Synchronization

the value sent by P. An optimization of this circuit is shown in Figure 5. (This circuit will be
obtained from that shown in Figure 4 with the help of a circuit optimizer that is currently
being written.) We next turn our attention to the compilation of communication guards in
hopCP.

3.3 Compilation of Communication-only Guards

Communication-only guards are employed in guarded commands such as shown in process
Q, below:

module Guardex
...type and channel declarations...
behavior

(P <= (a? -> P)
I(b? -> P))

I I
(Q <= (c? -> a! -> Q)

I(d? -> b! -> Q))
end

In this example, communications on channels c? and d? may arrive in any order. If both
axrive, exactly one of these guards is picked by Q non-deterministically. The implementation
of this guard uses a ring style arbiter, as shown in Figure 6. This circuit is exactly the one

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 11

Figure 4. The Partially Optimized Compilation for Multicast

GANESH GOPALAKRISHNAN, VENKATESH AKELLA

Figure 5: The Optimized Multicast Circuit

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 13

,i a G2

Figure 6: The Implementation of General Communication Guards

used in [30]. It requires the use of Q -s e le c t modules. A Q -s e le c t jnodule is capable of
steering an incoming token to either its tru e output or its f a l s e output depending on the
voltage level (high for 1 or low for 0) of a third input signal. In Figure 6, a token is injected
into the ring through a transition on s t a r t . Depending on which of RI and R2 comes first
(these corresponds to the guards), a G1 or a G2 will be generated (these correspond to the
computations that follow the guards). After that, the ring is re-initialized.

Such a circuit is typically realized in full custom VLSI using arbitration circuits. Proto­
typing these circuits using available programmable devices is virtually impossible, because
of the fact that most arbitration circuits require the use of low level transistor circuits [5,
Chapter 7].

We propose a solution to this problem, in case the guards are mutex. An example of a
mutex guard is the guard used in process P. It is guaranteed that only one of a? or b? will
arrive at P’s guarded statement precisely because the corresponding a ! and b ! are generated
by Q in the two “arms” of its own guarded command; since only one among c? and d? will
be non-deterministically picked, both a! and b! cannot arrive at P ’s guarded statement.
Therefore, by detecting mutex guards, we can compile a better circuit for implementing
guarded commands. This topic will be discussed in sections 3.4 and 3.5.

3.4 D etectin g M u tex Guards T hrough Flow Analysis

The guard evaluation circuitry shown in figure 6 is used for implementing general commu­
nication only guards because it is not possible to tell a priori which of the communication

14 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

actions in the guard(s) will arrive. However, if we know that the guards are mutex, a much
simpler circuit can be synthesized. The question now is “how straight-forward is it to detect
mutex guards” ?

In [24], we have proposed a flow analysis procedure that detects mutex guards. Although
this procedure is inherently exponential time (it is based on the reachability analysis pro­
cedure on Petri nets) and does not yet consider dependencies of control flow on data, we
employ numerous heuristics that make this procedure perform well on realistic examples.
For example, we have applied the flow analysis procedure on the specification of an Intel
8251 USART— a fairly involved serial communications adapter— and obtained good perfor­
mance results [24]. In that example, several communication-only guards proved to be mutex.
Hence, it appears that the technique we are going to propose in section 3.5 can be widely
applied.

3.5 Compilation of Mutex Guards

Consider the example from section 3.3, which is repeated below:

module Guardex
...type and channel declarations...
behavior

(P <= (a? -> P)
|(b? -> P))I i1 l

(q <= (c? -> a! -> q) -
|(d? -> b! -> q))

end

The SHILPA system determines which guards are mutex (the guards of P in our example)
and which are not (the guards of Q in the present example), and produces the circuit shown
in Figure 7. In this circuit, a transition on sta rt produces a transition on input A of MERGE
2 as well as input A of MERGE 4. These, in turn, produce transitions on the input A of
the C-ELEMENTs 3 and 5. Thus, C-ELEMENTs 3 and 5 are “armed” to look, in parallel,
for a communication on either a? or on b?. In other words, we speculate that both these
communications have equal likelihood of arrival; however, only one of the communications
can arrive (because the guard is mutex) and so we must also be prepared to “undo” the effect
of the unsuccessful guard. The circuit in figure 7 has this capability.

Now, a transition on the B inputs of these C-ELEMENTs comes from the outputs of the
C-ELEMENTs 9 and 10 which implement c? and d? respectively. Only one of these outputs
will be chosen. Let us say that c? arrives, and hence the output of C-ELEMENT 9 produces
a transition. This causes a transition on the B input of C-ELEMENT 3. This, in effect,
allows a? to succeed. It also causes a transition on the B input of MERGE 4 which causes

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 15

Figure 7: The Implementation of Mutually Exclusive and Non-Exclusive Guards

16 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

another transition on the A input of C-ELEMENT 5, thereby “undoing” the effect of the initial
transition on this very input.

The circuit that has been automatically synthesized is precisely the CAL component of [16].
This is not surprising, considering that both [16] and [33], in their compilation approaches,
use the CAL component to implement guards. However, for our circuits to work correctly,
they must be foam-wrapper packaged, as explained in the next section. This explains the
role of the DELAY elements, which are also automatically generated by SHILPA.

3.6 Foam-wrapper Packaging for Delay Insensitivity ■

The class of purely delay insensitive gate circuits is very limited [34]. By this, it is meant
that there are very few Boolean gate based sequential circuits whose behavior is invariant
over wire and gate delays. For example, a C-ELEMENT commonly realized using the state
equation c ’ - ab + be + ac (where c ’ is the next value of c) is not delay insensitive [35].
The usual way to make this circuit delay insensitive is by making sure that the internal
feedback has occurred before the external c transition is produced. One specific way to do
this is by padding the outgoing c wire with a DELAY element whose value exceeds the time
it takes the internal feedback paths to stabilize. For lack of a standard term, we call this
foam-wrapper packaging, based on Molnar’s use of the term “foam-wrapper principle” for
describing delay insensitive circuits. The role played by the delay elements is precisely to
foam-wrapper package the generated CAL component.

Therefore, modulo the one-sided constraint introduced by the DELAY element, the guard
evaluation circuitry for the guard of P in Figure 7 only employs standard gate style circuits.
It is also smaller in size and could be faster in operation, especially if there are many
communication guards in a guarded statement. In this example, we can see the example of a
design where: (i) the initially generated circuit is not delay insensitive; (ii) by foam-wrapper
packaging certain sub-circuits, we again obtain a delay insensitive circuit.

3.7 Handling Sharing

Resource sharing is handled in the SHILPA system by using CALL elements, as shown in
[4]. Recall that channels are also shareable resources. Therefore, two occurrences of com­
munication actions using the same channel name share the same physical channel resource.
Now consider the following hopCP specification

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 17

Figure 8: The Implementation of a Call Element

module Guardex
...type and channel declarations...
behavior

(P <= (a? -> b? -> P)
I(b? -> a? -> P))

I I
(q <= (c? -> a! -> q)

I(d? -> b! -> q))
end

In this specification, P uses channels a and b twice, once in a guard situation, and once
outside. Both these occurrences of a? as well as b? share the same physical channel resources.
We would like to employ CALL elements to share the channel hardware for channels a and b.

The question now is: can we employ the optimized circuitry for implementing the mutex
guard of P, despite the presence of channel sharing?

3.8 Putting It All Together

This problem defied a simple solution until we realized that typical implementations of
a CALL element [36] support many more behaviors than are normally exploited. In the
TRANSITION CALL element shown in Figure 8, if a transition on R1 is applied, a request
RS is made on the output. In addition, internally to the CALL element, MERGE element
2 is subject to an input transition, c-elem en t 4 is subject to an input transition on its

top input, and C-ELEMENT 5 is subject to a transition on its top input. When AS arrives,
internally to the CALL element, MERGE elements 2 and 3 are subject to input transitions.
The transition applied to MERGE 2 triggers the top input of C-ELEMENT 5 again, thereby
effectively “reset” ing this c-e lem en t’s input. However, the transition applied to MERGE
3 also causes a transition on the bottom input of C-ELEMENT 4. This C-ELEMENT fires,
producing a transition on Al. The call/call-return with respect to R2/A2 works, similarly.

If we apply the sequence R I; RI to this CALL element, a sequence RS; RS is generated,
and if we wait for sufficient time for the internal elements of CALL to settle, it ends up in
the same state as it was before R I; RI was applied. This additional capability of the CALL
element is exploited in the circuit compiled in the next subsection.

3.9 Analysis of the Circuit for Example 1

The specification shown in module Guardex generates the circuit shown in Figure 9. The
main difference between the circuits in Figure 7 and Figure 9 is the following: the latter
circuit uses a CALL element to share the channels. Since the sequence R I; RI applied to
a CALL element causes a sequence RS; RS at its output, we can still perform speculative
evaluation of the shared channels, with the “resetting” of the C-ELEMENT being performed
through the CALL element.

Again, the DELAY elements axe automatically generated by SHILPA. What we have im­
plemented is, in effect, a foam-wrapper packaged version of a shareable CAL component.

3.10 Discussion

The above examples illustrate many of the design options that designers have at their
disposal in compiling concurrent programs into asynchronous circuits. By making the HDL
more expressive, we place a greater burden on the circuit compiler writer. However, the
circuits generated by us are area efficient (compared to the results of related works). In some
cases, especially with mutex guards involving many communication guards, the circuits can
be more time efficient also, by not delaying actions un-necessarily (as demonstrated in the
example involving multicast).

It is possible to simulate the effects of higher level communication abstractions in virtually
every concurrent HDL available. However, this greatly burdens the specification writer, and
can be error prone. Already, concurrent programming is hard, and we should try not to
make it harder.

Trade-offs such as the use of complex building blocks (e.g. Q-select modules) vs. unusual
usages of standard building blocks (e.g. the synthesized CAL components) is also worthy of
further study.

18 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 19

D__I H

c__ I H

do la ^ 8

d - r t i

N

t
U T _ _ - _

~ T f c y OT »

Figure 9: Mutex Guards with Sharing

4 D e s ig n E x a m p le 2: T r a n s fo r m in g T a i l R e c u r s io n to P ip e l in in g

In this section, we demonstrate that the use of a process+functional language can greatly
facilitate the systematic compilation of pipelined circuits for implementing iterative compu­
tations. Functional languages have a simple and well understood semantics, and are very
expressive [37, 38]. There are many efforts which have shown that significant pieces of
hardware can be specified in a functional notation and compiled into synchronous hardware
[39, 40, 41]. Here, we hope to show that (i) the operational details of evaluating functional
expressions, including whether to evaluate the actual parameters before or after the function
call is made [42], can be captured in a process notation; (ii) in doing so, we can elaborate the
control aspects for pipelining a tail-recursive functional loop; and (iii) pipelined asynchronous
hardware can be compiled from such transformed specifications. The basic intuition is very
simple: the repeated evaluation of a functional expression of the form f (E) is equivalent to
the execution effects of the following hopCP program:

20 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

behavior
Process_f <= channel?x -> deliver!f(x) -> Process_f

I I
Process_E <= channel!E -> Process_E

In other words, the implicit rendezvous between the evaluation of E and the application of
/ can be elaborated quite simply.

As an example of the transformations involved, consider the specification of a series-parallel
multiplier written in a purely functional style

MULTFN(x,y,z) = if (isZero y) then z
else i l (odd y)

then MULTFN(x, y-1, z+x)
else MULTFN(lshift x, rshift y, z)

endi*
endif

It is possible to capture the evaluation of a call to MULT in hopCP, as shown below:

MULTP [x, y, z] <= ((isZero y) -> result!z -> MULTP [x, y, z])
I ((not (isZero y)) ->

((odd y) -> MULTP [x, (y-1), (z+x)])
I ((not (odd y)) -> MULTP [(lshift x), (rshitft y),z]))

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 21

Figure 10: The Nonpipelined Multiplier

22 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

A circuit compiled from this recursive hopCP specification is shown in figure 10. This
circuit uses two predicate-action blocks (to test for zero and odd), two shifters, one adder,
one subtractor, eight registers (to hold variables x, y, and z, and intermediate values), a
four-input MERGE, two two-input C-ELEMENTs, and a CALL element (to share the y reg­
ister). (Please note that all data bus connections are shown as “logical connections” i.e.
our compiler does not, at the time of writing, break down a data bus connection into its
constituent bits; such a feature will be available very soon. Until that happens, two data
output wires that are shorted together actually represents a place where a multiplexor has
to be introduced.) .

4.1 Obtaining a Pipelined Implementation

The conventional way of evaluating a call to MULTFN, or MULTP involves the evaluation of
all the actual argument expressions followed by a “jump” to MULT (this is always possible
to do when recursive calls are outermost— i.e. not nested inside other function calls [39].
However, notice that the value of the actual expression z+x is not needed until z is used in
the body of MULTFN or MULTP. Thus, holding up the recursive call of MULTP can be wasteful.

Fortunately, because MULTP is written in a process notation, we can transform it to
MULTP I PE shown next:

(MULTPIPE [x, y] <= ((isZero y) -> sz! -> MULTPIPE [x, y])
I ((not (isZero y)) ->

((odd y) -> azxlx -> MULTPIPE [x, (y-1)])
I ((not (odd y)) -> MULTPIPE [(lshift x),(rshift y)])))

(PZ[z] <= (sz? -> result!z -> PZ[z])
I (azx?xl -> PZ[xl+z]))

The variable z has been factored out of MULTPIPE and made a local variable of process
PZ. PZ’s role is to treat variable z as an abstract data type, allowing it to be accessed only
through its external operations. In the above specification, we provide two operations on
PZ: operation sz that stands for “send z” , and operation azx that stands for “add z to x” .
These operations are implemented through the rendezvous communications sz? and azx?x
respectively. Notice that the second rendezvous communication involves data x that is sent
from MULTPIPE to PZ.

The operation of MULTPIPE is as follows. If (not (isZ ero y)) and (odd y), it sends
x to PZ and immediately goes back to state MULTPIPE. While (not (isZ ero y)) and (not
(odd y)) , it ignores PZ, allowing it to complete the previous add operation, if any. When
z is needed inside MULTPIPE (occurs when (isZ ero y) is true), MULTPIPE orders PZ to send
the value of z through the channel resu lt . This process transformation achieves the effect

24 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

of software pipelining, and results in the circuit shown in figure 11. This circuit uses the
following additional components over the circuit in Figure 10: one register, a three-input
MERGE, and a TWO-INPUT CAL. A TWO-INPUT CAL, in turn, is generated precisely as
explained in section 3.5 using two two-input C-ELEMENTs, two two-input MERGES, and two
delay modules.

Thus, for a very small overhead, we axe able to obtain (in our estimate) a circuit that can
perform potentially much faster. (Detailed performance analysis studies are pending.)

We are studying the process of automating this kind of program transformation in SHILPA.
Until this happens, SHILPA still offers a convenient way to derive pipelined circuits from non­
pipelined iterative computations by allowing the specification writer to hand-transform tail
recursive functional specifications into process specifications. In our estimate, automating
this would not be haxd.

5 C o n c lu d in g R e m a r k s

We have argued that it is possible to view asynchronous VLSI design as concurrent pro­
gramming. We have shown how SHILPA synthesizes asynchronous circuits from concurrent
programs written in hopCP through a series of transformations. The target circuits are
realized using macromodules.

It is well known that writing and debugging concurrent programs is hard. The hopCP
notation avoids many possible pitfalls in writing concurrent descriptions by offering the
facilities of barrier synchronization and multicast. To ease design debugging, the hopCP
system offers CFSIM, a compiled code functioned simulator. Finally, hopCP also allows low
level hardware features such as “wire assignments” that can be checked for safe usage.

Our example in section 4 suggests that data related aspects can be handled by first writing
iterative computations in a functional notation, and transforming it into process descriptions
which can be pipelined. These, and other examples suggest that the axea of high level
optimizations is very promising for future investigations into investigating area and time
efficient circuits.

We also have touched upon the tradeoffs possible between circuit optimizations and timing
constraints. These issues surface when one tries to perform relatively lower level optimiza­
tions, such as shown in section 3.

In fact, we believe that one of the most fundamental problems that asynchronous designers
are left to answer is the following: given a certain silicon axea A and a sequential function
F to be implemented, how does one select the “right” set of building blocks (in terms of
their sizes and functionality) and populate the axea A using the blocks in such a way that
F is realized efficiently as well as reliably. This question cannot have a universal answer;
vaxious asynchronous design methodologies that are being proposed can be viewed as trying

to locate a point in the possible design space and justifying why that point is better for a
given application.

At present, we have synthesized many small circuits using the SHILPA system. We are
now in the process of synthesizing a large communications chip. Through this example, we
hope to gain insights into optimization techniques to be incorporated into future versions of
SHILPA.

R e fe re n c e s

1. Teresa H. Meng. Synchronization Design for Digital Systems. Kluwer Academic Pub­
lishers, Boston, 1991.

2. Gordon M. Jacobs. Self-timed Integrated Circuits for Digital Signal Processing. PhD
thesis, Electronic Research Laboratory, University of California, Berkeley, November
1989.

3. Ted E.Williams and Mark Horowitz. A zero-overhead self-timed 160ns 54bit cmos di­
vider. IE E E Journal of Solid State Circuits, 26(11):1651-1661, November 1991.

4. Ivan Sutherland. Micropipelines. Communications o f the A C M , June 1989. The 1988
A C M Turing Award Lecture.

5. C. A. Mead and L. Conway. An Introduction to VLSI Systems. Addison Wesley, 1980.

6. Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system design
methodologies. Technical Report UUCS-TR-90-016, Dept, of Computer Science, Uni­
versity of Utah, Salt Lake City, UT 84112, 1990. Being revised based on comments from
the acm Computing Surveys.

7. John Brzozowski and Carl-Johan Seger. Advances in asynchronous circuit theory: Part i:
Gate and unbounded intertial delay models; and part ii: Bounded intertial delay models,
mos circuits, di.sit'n frehnirinrs. Technical report.. Uiiivr mI v . T \\\it.. i 1 ; K > 0 .

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 25

26 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

11. C. van Berkel, C. Niessen, M.Rem, and R.Saeijs. Vlsi programming and silicon compi­
lation: a novel approach from phillips research. In Proceedings of IE E E International
Conference on Computer Design (ICCD), 1988.

12. Stephen H. Unger. Asynchronous Sequential Switching Circuits. John-Wiley, 1969.

13. Arthur D. Friedman. Fundamentals of Logic Design and Switching Theory. Computer
Science Press, 1986.

14. Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits
and systems. Distributed Computing, (1): 197-204, 1986.

15. David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. MIT Press, 1989. An A C M Distinguished Dissertation.

16. Jo C. Ebergen. Translating Programs into Delay Insensitive Circuits. Centre for Math­
ematics and Computer Science, Amsterdam, 1989. C W I Tract 56.

17. Mark B. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

18. Lance A. Glasser and D. W. Dobberpuhl. The Design and Analysis o f VLSI Circuits.
Addison-Wesley, Reading, MA., 1985.

19. M.J.Stucki and J.R.Cox, Jr. Synchronization strategies. In Proceedings of the Caltech
Conference on VLSI, pages 375-393, January 1979.

20. Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Department of Computer Science, Stanford University, October 1984.

21. Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pein Fang. Q-
modules: Internally clocked delay-insensitive modules. IE E E Transactions on Comput­
ers, 37(9):1005-1018, September 1988.

22. Venkatesh Akella and Ganesh Gopalakrishnan. hopcp: A concurrent hardware descrip­
tion language. Technical Report UUCS-TR-91-021, Dept, of Computer Science, Univer­
sity of Utah, Salt Lake City, UT 84112, 1991.

23. Venkatesh Akella and Ganesh Gopalakrishnan. Specification and validation of control
intensive ics in hopcp. Technical Report UUCS-92-001, Dept, of Computer Science,
University of Utah, Salt Lake City, UT 84112, 1991. Submitted tp the IE E E Transactions
on Software Engineering.

HIGH LEVEL OPTIMIZATIONS IN ASYNCHRONOUS CIRCUIT COMPILATION 27

24. Venkatesh Akella and Ganesh Gopalakrishnan. Static analysis techniques for the synthe­
sis of efficient asynchronous circuits. Technical Report UUCS-91-018, Dept, of Computer
Science, University of Utah, Salt Lake City, UT 84112, 1991. To appear in TAU ’92:
1992 Workshop on Timing Issues in the Specification and Synthesis o f Digital Systems,
Princeton, NJ, March 18 -20, 1992. ,

25. Lawrence C. Paulson. M L for the Working Programmer. Cambridge University Press,
1991. ISBN 0-521-39022-2.

26. John H. Reppy. CML: A Higher-order Concurrent Language. In A C M S IG P L A N ’91
Conference on Programming Language Design and Implementation, June 1991.

27. Michael C. McFarland, Alice C. Parker, and Raul Camposano. The high-level synthesis
of digital systems. Proceedings o f the IEEE, 78(2):301—318, February 1990.

28. Geoffrey Brown. Towards truly delay insensitive realization of asynchronous circuits in
process algebras. In Workshop on Designing Correct Circuits, Oxford, 26 -28. Springer
Verlag, September 1990. Proceedings o f the D C C Workshop, Oxford, September, 1990,
published in Springer’s new series ‘ Workshops in Computing’.

29. C. A. Mead and L. Conway. An Introduction to VLSI Systems. Addison Wesley, 1980.
Chapter 7, entitled “System Timing”.

30. Erik Brunvand. Implementing self-timed systems with fpgas. In International Workshop
on Field Programmable Logic and Applications, Oxford, September 1991.

31. C. A. R. Hoare. Communicating sequential processes. Communications o f the A C M ,
21 (8):666—677, August 1978. Original article on CSP.

32. Arthur Charlesworth. The Multiway Rendezvous. A C M Transactions on Programming
Languages and Systems, 9(3):350-366, July 1987.

33. Jan Tijmen Udding and Mark B. Josephs. The design of a delay-insensitive stack.
In Workshop on Designing Correct Circuits, Oxford, 26 -28. Springer Verlag, Septem­
ber 1990. Proceedings o f the D C C Workshop, Oxford, September, 1990, published in
Springer’s new series ‘ Workshops in Computing’.

34. John Brzozowski and Jo C. Ebergen. On the Delay-Sensitivity of Gate Networks. Tech­
nical Report CSN90/X, Eindhoven University of Technology, 1990.

35. John Brzozowski and Jo C. Ebergen. Recent developments in the design of asynchronous
circuits. Technical Report CS-89-18, Department of Computer Science, University of
Waterloo, May 1989.

28 GANESH GOPALAKRISHNAN, VENKATESH AKELLA

36. Erik Bmnvand. Parts-r-us. a chip aparis(s)— Technical Report CMU-CS-87-119,
Carnegie Mellon University, May 1987.

37. Paul Hudak. Conception, evolution, and application of functional programming lan­
guages. acm Computing Surveys, (3):359—411, September 1989.

38. John Hughes. Why functional programming matters. Technical Report 16, Program­
ming Methodology Group, University of Goteborg and Chalmers Institute of Technology,
Sweden, November 1984.

<*
39. Steven Dl Johnson. Synthesis of Digital Designs from Recursion Equations. The MIT

Press, 1984. An ACM Distinguished Dissertation-1983.

40. Stephen Johnson, B. Bose, and C. Boyer. A tactical framework for hardware design. In
Graham Birtwistle and P. A.Subrahmanyam, editors, VLSI Specification, Verification and
Synthesis, pages 349-383. Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838­
246-7.

41. Robert M. Wehrmeister. Derivation of an SECD machine: Experience with a trans­
formational approach to synthesis. Technical report, Indiana University, Bloomington,
1990.

42. Zohar Manna. Mathematical Theory of Computation. New York: McGraw-Hill, 1974.

