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A bstract

This paper presents a novel method that effectively combines both 

control variates and importance sampling in a sequential Monte 

Carlo context while handling general single-bounce global illumi

nation effects. The radiance estimates computed during the render

ing process are cached in an adaptive per-pixel structure that defines 

dynamic predicate functions for both variance reduction techniques 

and guarantees well-behaved PDFs, yielding continually increasing 

efficiencies thanks to a marginal computational overhead. While 

remaining unbiased, the technique is effective within a single pass 

as both estimation and caching are done online, exploiting the co

herency in illumination while being independent of the actual scene 

representation. The method is relatively easy to implement and to 

tune via a single parameter, and we demonstrate its practical ben

efits with important gains in convergence rate and applications to 

both off-line and progressive interactive rendering.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional 

Graphics and Realism— Ray-tracing

1 In trodu ction

Global illumination effects are a key component to the plausible de

piction of an environment and the ability to efficiently render these 

phenomena has considerable scientific implications. Although real

ism is often of concern to the movie and gaming industries of which 

common tools include 1-bounce indirect lighting, such interest also 

emerged in the visualization community where ambient occlusion 

shading was shown to provide enhanced perceptual cues by better 

conveying depth information and spatial relationships [16].

Despite their low order of convergence, Monte Carlo methods 

are a very general and robust technique for stochastically estimat

ing multi-dimensional integrals and have consequently been heav

ily used in path-tracing to render complex global illumination ef

fects. Several techniques were developed to reduce the variance of 

such estimates including importance sampling, control variates and 

(ir)radiance caching, sometimes trading noise for bias perceptually 

less noticeable in order to yield plausible renderings with practical 

computation times. Integrating the product of the cached radiance 

and the BRDF must in general be done on the fly via resampling. 

While realistic for a few coefficients, this becomes prohibitive for 

refined representations making it hard to predict whether the reduc

tion in variance will actually overcome the computational overhead.

Building on the previous concepts, this paper presents a novel 

method for single-bounce illumination exploiting the coherency of 

the integrand on displayed surfaces induced by the correlation of 

primary rays. Radiance estimates computed during rendering are 

cached in a per-pixel data structure designed as a directional grid of 

adaptive resolution. This caching scheme provides dynamically re

fined representations of two predicate functions allowing both con

trol variates and importance sampling to be used in a sequential
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Monte Carlo context. This context allows for increases in the order 
of convergence (not just a constant noise reduction factor) of the es

timation process. Since each new estimate is evaluated according to 

a fixed snapshot of the two predicates, no bias is introduced, while 

allowing the functions to evolve between samples.

This document starts by providing an overview of the related 

work and theoretical background. The method is then presented 

followed by both quantitative and qualitative results along with a 

discussion of its limitations.

2 R elated  W o r k

The pioneer work of Ward et al. [35] on irradiance caching intro

duced an octree structure guided by the density of rays rather than 

by the actual geometry. In this approximation model for diffuse 

surfaces, irradiance estimates are computed by interpolating pre

vious records if available. Otherwise, a new irradiance record is 

estimated by sampling the hemisphere and cached. Ward et al. [34] 

later refined the algorithm by using gradient information to com

pute better interpolations. Smyk et al. [30] then proposed placing 

irradiance samples more effectively by influencing their distribution 

according to the estimated speed of illumination change. Tabellion 

et al. [32] improved the original method using a modified irradiance 

gradient caching technique combined with an approximate lighting 

model. Christensen et al. [7] concurrently introduced a tiled 3D 

MIP map (fixed-size grids nested in an adaptive octree) storing ir

radiance values estimated from a photon tracing pre-pass, which are 

interpolated and combined with final gathering during rendering.

Instead of caching irradiance, Chiu et al. [6] presented a fixed- 

size 3D data structure initialized through a particle trace where each 

cell contains a 2D directional field approximating the incoming ra

diance. Neighboring ’’light volumes” are then spatially averaged 

to determine the local irradiance approximation. Greger et al. [15] 

later described a more refined ambient term computation by storing 

the radiances in a geometry-dependent bi-level grid of which cells 

contain a fixed-size radiance field. The irradiance distribution func

tion is pre-computed for a pre-defined set of directions and approxi

mated during rendering by averaging the records. Christensen et al. 

[8] proposed a hierarchical representation of the incoming radiance 

based on Haar wavelets. The method relies on a final gathering step 

and a secondary system is solved to guide importance-driven re

finement. All these techniques represent the incoming radiance as 

a discontinuous piecewise constant function.

Arikan et al. [1] subsequently proposed a structure initialized via 

a photon-map-based pre-pass only accounting for distant contribu

tions of which incident radiance is expected to be smooth. The lat

ter are approximated using spherical harmonics and combined with 

nearby contributions evaluated using a visibility heuristic during 

rendering. Krivanek et al. [24] also made use of (hemi)spherical 

harmonics to approximate the diffuse term. Their method was 

refined in [23] by reducing the artifacts due to the (ir)radiance 

caching schemes based on perceptual criteria, trading correctness 

for smoothness. Spherical harmonics are well-suited to represent 

radiance but their global support requires all coefficients to be re

computed at each update. Also, evaluating their integral implies a 

linear-cost dot product prohibitive for large numbers of coefficients.
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Considering volume properties, Blasi et al. [4] proposed to send 
rays from the light sources during a first pass, computing the prob
ability of interception at each step and storing the fraction of en
ergy scattered isotropically in the corresponding voxels. The energy 
stored is accumulated during the rendering pass where camera-rays 
travel straight through the scene, yielding better estimates while 
mainly benefiting phase functions with a dominant isotropy. Based 
on radiosity, they [5] subsequently proposed to store data only on 
the envelope of a medium during the first pass, which prevents the 
observer from being inside the media and requires an increased 
sampling rate for accurate renderings.

Other methods focused on using the cached values to guide the 
sampling process more efficiently. When accurate computations 
are needed, Jensen [20] proposed to use the samples in the pho
ton map for importance sampling rather than directly computing 
estimates from them. Dutre et al. [9] extended Lepage’s method 
[26] to 2D using a k-D tree, modifying the support of equally sam
pled bins rather than the sampling probability of predefined bins, 
hence allowing for flexible stepwise probability density functions 
(PDFs). The hierarchical nature of the algorithm subsequently de
scribed in [10] is achieved by looking up neighboring piecewise 
constant cells of fixed grids if the current cell has not converged 
yet, which is particularly inefficient during the initialization pro
cess. Instead, Pietrek et al. [28] used Haar wavelets to represent 
adaptive hemispherical PDFs defined per surface patch. Their re
sults showed little impact of the order of the representation on the 
variance reduction for importance sampling purposes. Also, Hey et 
al. [19] proposed to compute the PDFs as the sum of the footprint 
of each particle. In order to guarantee non-zero stepwise repre
sentations, the PDF values are customarily artificially clamped to a 
minimal threshold.

Lafortune et al. [25] proposed to cache radiance values in a 
duotricenary tree (the 5D extension of an octree) refined based on 
the density of primary samples. In addition to guiding the sampling 
process, the stepwise fixed-grid hemispherical representations built 
via resampling are also used as control variates. Besides the unde
sirable discontinuous nature of the resulting integrand, this double 
usage actually does not yield to any further variance reduction as 
discussed in the next section. Also, while they reported reductions 
in variance but with unaffected convergence rates, the linear cost of 
resampling induced large computational overheads. For each sam
ple set drawn from the BRDF distribution, Szecsi et al. [31] pro
posed to linearly combine via a variance-minimizing weight a clas
sical importance sampled estimate and one using static approxima
tions to direct light sources or environment maps as control variates. 
This consistent (asymptotically unbiased) method privileges each 
individual technique where it performs best, but the chosen PDF 
does not correlate with the actual control variates integrand and the 
techniques consequently do not directly benefit one another. In
stead, Fan et al. [12] proposed an unbiased method defining a mix
ture as a weighted sum of components, using one function for the 
BRDF and one for each light source. While fixed coefficients drive 
the sampling distribution, a linear system is assembled and solved 
to compute the mixture coefficients defining the control variates.

Smyk et al. [29] and Gautron et al. [13] also investigated ways 
to adapt such caching methods to the temporal change of incoming 
radiance. Instead, sequential methods focusing on adaptation dur
ing the rendering process itself recently received some attention in 
the graphics community and the works of Fan [11] and Ghosh et al. 
[14] showed promising applications of this framework.

3 Th e o r e t i c a l  B a c k g r o u n d

This section provides an overview of the related theoretical back
ground, including variance reduction techniques for Monte Carlo 
integration and the main concepts of radiative energy transfer. The 
reader is referred to classic texts for further details.

Monte Carlo methods are a general and robust technique for 
stochastically evaluating multi-dimensional integrals. The basic 
method computes the integral F of a function /  on a domain D 
as F =  \\D\\f, the mean value /  of /  being evaluated as the sample 
mean. To reduce the variance of the estimates, several techniques 
were developed [18, 22].

The control variates method assumes the knowledge of a func
tion g approximating the integrand /  and of which integral G can 
be analytically computed. If /  — g is nearly constant, the variance 
will be reduced as the original integral is rewritten

3.1 Monte Carlo Integration

F =  f(x)dx=  / [f(x)-g(x)]dx + G. (1)

Instead, importance sampling assumes a normalized PDF p > 0 
correlated with /  and such that p =/= 0 whenever f  =/= 0. If f  jp  is 
nearly constant (ideally F), the variance will be reduced. Defining 

a continuous random variable X  distributed according to p and the 
expectation E, the original integral is reformulated as

F : f(x)dx-- m

1D P(x)
p(x)dx =  E

f (X)
P(X)

(2)

Both techniques can be combined [27] by estimating the integral 
term of equation 1 using importance sampling, yielding the unbi

ased estimator F of standard deviation ct[F], reading for N samples

F :

a  F

f(X )-g (X )

p(X)

^ . N f j i? 
+ G=i_ F =  - Y  J(Xl 

N H P{Xi,

—V

tg1 
1 

?g1

i
= —rCT

1?g1 
1 

tg

i

N L p w N2 L p w  j

+ G (3)

■ (4)

Equation 3 shows that p should now resemble f —g rather than /. 
As the sign of the integrand f  — g might here vary while p > 0 must 
hold, an alternative is to correlate p with \f — g\ instead [2], Also, 
if g is proportional to p, the previous estimator becomes identical 
to the one with importance sampling alone. This implies that if 
a function is used for importance sampling, using it as a control 
variate as well will not yield any further variance reduction [33].

Equation 4 shows that when using static predicate functions p (as 
when importance sampling from the BRDF) and g (as when g =  

0 and p =  1/||Z>|| for basic Monte Carlo integration), the method 

exhibits an order of converge of 1/2, meaning that«2 times as many 
samples are necessary to reduce the expected error by 1 jn. In this 
context, these techniques yield a reduction of variance if V[(f — 
g)/p} <  V[/||D||] (both constant with respect to N) corresponding 
to a vertical translation on a logarithmic scale of the convergence 
curves shown in figure 4 (division by a constant factor on a linear 
scale). To affect the slope of these curves, i.e. the convergence rate, 
sequential Monte Carlo methods are adequate.

In Markov chain Monte Carlo (MCMC) methods, the next state 
solely depends on the present state, i.e. every future state is condi
tionally independent of every prior state. Sequential Monte Carlo 
(SMC) methods split the computation in stages such that the esti
mator in a subsequent stage is adapted based on the information 
gained during previous stages in the sequence. While this depen
dent sampling may appear to introduce bias, it can be proven that 
the result is unbiased and that the method can considerably increase 
the rate of convergence of the estimation process [17]. This can 
be illustrated by assuming adaptive predicates g and p such that 
V[(f — g)/p\ decreases with an order 2a  with respect to V\f). The 
standard deviation then becomes

CT F
1

N 2+a °\ f$ ) (5)
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Figure 1: Per-color-channel coefficients stored in each directional 
cell of a radiance cache (left) and 2D B-spline reconstruction of the 
weighted incoming radiance defining predicate % (right).

3.2 Light Transport

The evolution of (spectral) radiance L as light interacts with a sur

face is defined by the Rendering Equation (RE). For a given posi

tion in space x and direction <3, this equation reads [211

L(x.B) =  Le(x.B) + /  Hx.Bj)P(B.S>j.n) Bj-Tida>j. (6) 
JllT

where Le is the emitted radiance, n the surface normal, and j3 the 

bidirectional reflectance distribution function (BRDF) which must 

satisfy J'-,ITfi(B .B j.n) B j-ndBj<  1 to ensure energy conservation.

4 SM C A d a p t a t io n  fo r  R e n d e r in g

This section describes how to carry the evaluation of integral 6 in 

a sequential Monte Carlo context using both control variates and 

importance sampling. We introduce a per-pixel 2D data structure 

allowing for efficient estimations of integrals over solid angles in 

which the samples computed during rendering are cached. The fol

lowing subsections detail the caching schemes for each variance re

duction technique as well as the adaptive refinement strategy before 

explaining how this information is used for estimate evaluations.

4.1 Caching for Control Variates

The representation defining predicate g should provide low-cost 

read/write access and efficient computation of G. B-splines meet 

both criteria as their basis functions have local support and their in

tegral evaluates to a simple sum of coefficients regardless of their 

order, except at the domain boundaries. For this property to hold 

in 2D, we regularly partition the normalized hemispherical coordi

nates s=  (j>/2tz and t =  l — cos(9 ) to yield uniform solid angles.

Control variates lead to the new integrand f —g of which prop

erties must be analyzed in correlation with the complexity of eval

uating g. While order 0 B-splines are the cheapest (involving l co

efficient), their piecewise constant representation artificially intro

duces undesirable high-frequency discontinuities in the integrand, 

therefore decreasing the potential benefit of the method. Order l 

B-splines (piecewise linear) consequently provide higher quality 

estimates for a modest overhead (4 coefficients) while remaining 

natural interpolants. B-splines of order 2 (piecewise quadratic) and 

higher obviously entail a higher cost while being smoother and less 

tight to the control points as the support of the basis functions in

creases, usually yielding lower quality estimates. Order l B-splines 

are consequently most suitable and a grid representation allows for 

efficient interpolation.

We exploit the periodicity in s and introduce in t two polar val

ues computed as the average of the boundary coefficients at t =  0 

and t =  l respectively. The first allows to eliminate discontinuities 

at the pole when reconstructing g and to regularize the top bound

ary with respect to integration. The bottom boundary is implied as

Figure 2: Color-mapped scalar values of predicate p at 2 different 
refinement stages.

zero (due to the cosine term in the integrand) and the second po

lar value allows for an efficient computation of G which evaluates 

to its simple weighted subtraction to a hemispherical average. As 

shown in figure l, each directional cell holds a color of which chan

nels represent the coefficients of the 2D B-splines defining pred

icate g. Whenever a new sample is estimated, its color is aver

aged with the corresponding cell's coefficients while incrementing 

its counter of cached records C which determines the respective 

weights l/(C +  l ) and C/(C+  l ). The hemispherical and polar av

erages are maintained and updated at each write operation, allowing 

the constant time computation of both g and G during estimations.

4.2 Caching for Im portance Sam pling

For efficiency reasons, the resolution used to represent predicate 

p is set to be the same as the one for g. Drawing samples from 

a given PDF can be done by inverting its cumulative distribution 

function (CDF) defined as its partial integral. This favors cheap 

low-orders while continuity is not crucial here. Order 0 B-splines 

are therefore adequate. In addition to the radiance coefficients and 

records counter, each cell contains a scalar estimate of the value of 

|/ — g| over the associated solid angle as shown in figure 2. When 

a new sample of /  is added to a cell, the value of g is determined 

and f —g computed. Since the latter is a color, a scalar PDF sample 

is generated by averaging the absolute values of its channels and 

merged with the cell's PDF coefficient.

To make the sampling process inexpensive, each cache maintains 

a logical tree of partial sums [33] similar in spirit to a Huffman tree, 

stored in a flat array of size 2N — l with N being the number of cells. 

Each node of this complete binary tree holds the sum of its 2 chil

dren, starting with the cells' values of p as the leaves up until the 

root holding the sum of all PDF coefficients. While write operations 

need to traverse the logi(2N) nodes of a branch, the space of basis 

functions can now be sampled in log time given a random number. 

Normalization is achieved by multiplying the random number by 

the value of the root node. If the random quantity is greater than 

the value of the first child of the current node, its PDF value is sub

tracted from the quantity and the second child becomes the current 

node, the latter being set to the first child otherwise. The process 

is recursively repeated as to traverse an entire branch until a cell is 

reached and a random direction is drawn from the linear CDF.

4.3 Adaptive Refinement

The proposed data structure provides an adaptive representation 

permanently refining in correlation with the current records popula

tion. It is initialized as a screen-size buffer of radiance caches with a 

single initial cell of which radiance B-spline coefficients, PDF value 

and records counter default to zero. Since the PDF is not relevant at 

this stage, a uniform directional sampling strategy is used. For each 

primary ray traced, the cache corresponding to the target pixel is
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identified in constant time while the direction of the secondary ray 
determines the cache’s cell which should be updated. If the refine
ment criterion is met, the resolution of the cache is doubled in both 
polar and azimuthal coordinates while duplicating previous records 
to preserve the data repartition. The cells’ records counters of the 
cache are then divided by the dimensionality of the split, i.e. 4. This 
effectively reduces the weight of ancient coarse records and allows 
future locally relevant samples to be more influential. Inheritance 
is enforced by preventing the counters from being rounded down to 
zero which would cause a new record to overwrite rather than being 
merged with ancestral information. While each cell of the radiance 
cache has to be processed, the linear cost of refining is however not 
prohibitive as its frequency of occurrence is low compared to other 
read/write accesses.

This inheritance strategy allows a PDF to always contain a por
tion of its ancestors. By prohibiting the refinement of the initial 
cells until their PDF coefficient is non-zero, all PDFs are guaran
teed to be non-zero as well. This allows the PDFs to tend freely to
wards zero where needed while remaining implicitly well-behaved 
without the need for an artificial bound as in previous approaches.

4.4 Refinement Criterion
The refinement criterion is defined as a threshold on the average 
value of the records counters also maintained in each radiance cache 
to yield a constant time access. Such criterion will adaptively pro
mote deeper refinement based on the density of rays while control
ling the inertia of the system. Decreasing it will increase the ver
satility of the caches requiring a smaller population before refining. 
This induces predicate functions quickly morphing into the target 
functions, yielding improved convergence rates and lower variance.

However, if the threshold is too low, the caches might evolve 
while being under-populated and yield unreliable predicates gener
ating estimates of increased variance. Hence, the optimal criterion 
is the lowest one guaranteeing that the structure contains mean
ingful information before refining. In our experiments, it was de
termined empirically by conducting a few trial-and-error tests on 
down-sampled images or on the fly during interactive sessions.

4.5 Minimizing Variance
When no information is available yet about the radiance term of 
equation 6, importance sampling the integrand based on the product 
of the BRDF and cosine term often yields lower variance than a uni
form sampling strategy as used by the radiance caches. Because it is 
correlated with /  but not with \ f  — g\, it is not desirable to use such 
PDF with the control variates as a substitute to the PDF of a cache. 
This consequently yields two estimators: a classical MCMC im
portance sampling estimator preferable upon start-up, and a SMC 
estimator most efficient at higher population levels. In order to use 
the estimator performing best given the current population, each 
radiance cache is associated to a variance tracker.

Whenever a secondary ray needs to be traced, the tracker indi
cates which estimator yields lower variance at the given sampling 
stage and a direction is drawn from the corresponding PDF to com
pute a new sample. From this single sample, two estimates are 
evaluated and fed to the tracker computing and aggregating their 
respective sample variance based on an accumulated integral es
timate. While the variance of the first estimator is constant, the 
dynamic nature of g and p induces the variance of the second esti
mator to vary throughout the sampling process. The weights used to 
update its estimated variance are consequently computed by clamp
ing the total number of estimates to a threshold value, hence making 
recent variance estimates more influential than older ones. Because 
the evolution of the estimator’s variance is directly correlated to 
its inertia, the threshold value and refinement criterion should be 
correlated as well. In practice, our experiments revealed that good 
results were obtained by setting them to an identical value.

4.6 Estimate Evaluation

For each estimation of integral 6, the radiance cache and variance 
tracker corresponding to the pixel being rendered are identified. 
The tracker indicates the estimator from which to derive a sample 
direction. In case of the MCMC estimator, the PDF associated to 
the BRDF provides a means of defining a 2D sample direction on 
the hemisphere, classically by inverting its CDF. In case of the SMC 
estimator, the tree of partial PDF sums allows to importance sam
ple a direction of associated p. A newly ray-traced radiance value 
is then evaluated and multiplied by the BRDF and cosine value to 
yield a new sample /  from which two estimates are computed. For 
the MCMC estimator, this is achieved by simply dividing the sam
ple by its PDF value. For the SMC estimator, the term G used for 
control variates is directly read from the cache and the integrand ap
proximation g for the given direction is computed from the B-spline 
coefficients. This term is then subtracted from /  and the result is 
divided by p and added to G to form the final low-variance esti
mate. While both are necessary to approximate the variance of the 
estimators, only the estimate initially indicated by the tracker does 
contribute to the integral evaluation, the other being biased as its 
PDF value does not correlate with the actual sample distribution.

4.7 Pseudo-Code

Figure 3 provides a high-level pseudo-code illustration of the in
tegration of the various steps individually presented. Lines 3 to 9 
correspond to importance sampling as described in sections 4.2 and 
4.6, lines 12 and 13 to the control variates step from section 4.1 and 
lines 14 and 15 to the actual estimation process from section 4.6. 
Finally, line 16 updates the variance estimates based on section 4.5, 
line 17 populates the structure as explained in sections 4.1 and 4.2, 
while line 18 corresponds to the refinement step from section 4.3. 
For clarity sake, the BRDF term here implicitly refers to the product 
of the actual BRDF and the cosine term (i.e. the dot product).

1. EstimateHemisphericallntegralO

2. (cache, tracker) = ray.GetPixelDataQ;

3. estimator = tracker.GetEstimatorQ;

4. if (estimator == SMC)

5. (direction, Psmc) = cache.GetSampleDirectionQ;

6- p mcmc = brdf.GetPDF(direction);
7. else

8. (direction, p mcmc) = brdf.GetSampleDirectionQ;

9- P s m c  = cache.GetPDF(direction);

10. radiance = TraceRay(position, direction);

11. f = radiance * brdf.GetValue(direction);

12. G = cache.GetlntegralQ;
13. g = cache.GetValue(direction);

14. estimateSMc = G + (f-g)/PsMc;

15. estimate*fCMC = f / Pmcmc',

16. tracker.Update(estimatesMC> estimate^cM*:);
17. cache.AddRecord(direction, f);

18. if (cache.CriterionlsMetO) cache.RefineQ;

19. return (estimator == SMC) ? estimate&jfc : estimate^cM*:;

Figure 3: Pseudo-code for the integral estimation

5 R e s u lt s

In order to demonstrate the convergence characteristics of the 
method, we experimented with a test-bed consisting of a plane illu
minated by a gradient background for which an analytical solution 
was derived. The quantitative results are shown in figure 4 where 
the number of samples per pixel on the abscissa increases by a fac
tor 4. The slopes of the root mean squared error (RMSE) curves il-
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Figure 4: Logarithmic plots of root mean squared error and efficiency 
versus number of samples per pixel for several strategies: no con
trol variate (cvO), piecewise constant control variates (cv1), piece
wise linear control variates (cv2), no importance sampling (isO) and 
piecewise constant PDFs (is1), where is1_cv2 corresponds to the 
proposed SMC method and isCLcvO to MCMC. Results are shown 
for an initial uniform sampling strategy (left) and compared to a com
bination with BRDF importance sampling (right).

lustratc the 0.5 convcrgcncc rate of MCMC integration compared to 

the higher order of SMC here reaching 0.94 88% gain). Consid

ering the rightmost vertices of the BRDF-based graphs, the MCMC 

approach would require about 138 times as many samples in or

der to reach the error level achieved by the SMC method which in 

contrast only requires a 79% overhead (factor of 1.79) in computa

tional time, yielding a 77X speed-up. The graphs also illustrate the 
impact of the variance trackers determining which of the MCMC 

BRDF importance sampling estimator (BRDF_is0_cv0) or the SMC 

estimator (isl_cv2) performs best at the current population level as 

to yield the minimum variance of the two (BRDFJsl_cv2).

While it is constant for MCMC integration, the efficiency 

((variance * cost)-1) of the SMC method keeps increasing with 

the sampling rate. Due to the smooth illumination, control variates 

here provide most of the gain whereas importance sampling has a 

more prominent impact in complex scenes. This illustrates their re

spective strengths. While control variates approximate well smooth 

variations, importance sampling performs better for higher frequen

cies by focusing on strong contributions. When combined, con

trol variates allow importance sampling to focus on hard features 

rather than smooth high contributions, yielding increased efficien

cies. The impact of the variance trackers is here again illustrated. 

Because both initially yield similar results but at different costs, 

the SMC estimator alone (isl_cv2) is slightly less efficient than a 

MCMC uniform sampling estimator (is0_cv0). By minimizing vari

ance at a marginal cost, the trackers allow the combined estimator 

(BRDFJs 1 _cv2) to yield reduced initial efficiency loss compared to 

the MCMC BRDF importance sampling estimator (BRDF_is0_cv0) 

while preserving the substantial gains at higher sampling rates.

Table 1 details the memory requirements of the data structure 

for various qualitative experiments generated at a resolution of 

512x512 pixels on an Intel Xeon 3.00GHz processor desktop with

Table 1: Characteristics of the radiance caches after rendering the 
listed figures, including the value used for the refinement criterion, 
the refinement depth reached, and the corresponding number of cells 
and peak memory usage (using double-precision).

2GB of RAM. The figures were generated by processing each pixel 

at a time, allowing the memory associated with a radiance cache 

to be deallocated once the corresponding pixel has been rendered. 

The results arc shown next to their associated error images.

Figure 5 shows a scene rendered with 1-bounce global illumi

nation and where indirect lighting is mainly reflected by the floor. 

Control variates alone adequately capture and reduce variance from 

this large source but have little impact on evaluating finer contri

butions. While importance sampling alone also reasonably reduces 

variance in some places, it introduces several largely under/over

estimated pixels scattered in the image. However, when combining 

both techniques, control variates mainly handle the smooth illumi

nation from the floor and allow importance sampling to focus on 

higher frequency signals, reinforcing the statement made earlier. 

Because the resulting sampling strategy differs from the one with 

importance sampling alone, both computational overheads and vari

ations in path-space will impact the overall rendering cost.

Figure 6 shows an application to ambient occlusion shading. 

While being less substantial due to the relatively lower sampling 

rate, the superiority of the combination of both variance reduction 

techniques in the SMC framework is here again illustrated. Al

though the method ideally relies on purely static integrands, the 

coherency in the scene allows pixel-space jittering to be used with

out compromising convcrgcncc. Visible artifacts only appear here 

as a few high variance pixels along the edges of the light polygons 

due to the strong uncorrclation between the integrand on a light's 

surface and the one on the ceiling behind it.

Figure 7 shows an application to environment map illumination 

with a Phong BRDF model. Due to the higher specularity of the 

material and the details of the environment map, SMC importance 

sampling alone here performs better than SMC control variates 

alone, while their combination exploits their respective strengths. 

Although the proposed SMC method effectively reduces variance 

on the left side of the image, MCMC BRDF importance sampling 

performs better on the right side where the illumination distribution 

coincides with the specular lobe. This illustrates the limitations of 

the method for specular materials as discussed in section 6.

Finally, as each estimation accesses a single radiance cache asso

ciated to the pixel being rendered, the method is readily suitable to a 

pixel-based parallel implementation and was integrated to the open 

source interactive ray-tracing system Manta [31. The technique was 

used as part of a progressive rendering framework where the image 

is iteratively refined whenever the user stops moving the camera and 

reset otherwise. Because all pixels arc rendered in parallel rather 

than sequentially, all radiance caches must here be maintained si

multaneously. To control memory allocation, an upper bound on 

their maximal depth was set. Figure 8 shows the progressive con

vcrgcncc of images generated during an interactive session on 4 

Dual Core Optcron 2.4GHz processors. Due to the overhead of the 

method, the resulting frame rates arc lower than the ones obtained 

with MCMC, allowing the latter to trace more samples per unit of 

time. The initially slightly noisier images illustrate the marginal ef

ficiency loss of the technique at low population levels. Its efficiency 

however rapidly grows as the convcrgcncc rate increases, ultimately 

reducing variance more effectively.
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6 D is c u s s io n  an d  Future  W o r k

While remaining statistically correct, the quality of the estimates 
will gradually degrade as the specularity of the BRDF increases. 
In addition to the initial sample distribution causing an unbalanced 
population of the structure, such BDRF will strongly shape the in
tegrand and require the caches to be heavily populated before being 
chosen by the trackers. Further investigation is required to alleviate 
this limitation while preserving the efficiency of the method.

Although the primary focus of this paper is the efficiency of 
the method rather than its memory requirements, the use of an ap
propriate data compaction scheme could be considered. Note that 
the quantities reported can be trivially halved by using a single
precision floating point representation rather than double as was 
done for consistency reasons with the particular ray-tracer used.

Even though setting the refinement criterion requires little effort, 
further investigation is also needed to determine an optimal formu
lation which adapts to the local complexity in lighting rather than 
being global to the scene. Moreover, while the method showed to 
be beneficial in a progressive rendering context, future directions of 
research should explore ways of increasing efficiency at low popu
lation levels in order to reach true interactivity.

7 C o n c lu s io n

We have presented a novel method which effectively combines both 
control variates and importance sampling in a symbiotic sequential 
Monte Carlo context. While handling general single-bounce global 
illumination effects, the method yields continually increasing effi
ciencies thanks to a modest computational overhead achieved by 
exploiting the correlation of the primary rays and implicitly guar
antees non-zero PDFs via its inheritance strategy.

A main advantage is that both estimation and caching are done 
online, allowing the sampling process to be driven by both visual 
importance and features of interest in the scene while remaining 
unbiased. The algorithm exploits the coherency in illumination of 
the latter while being independent of its actual representation. The 
technique is also relatively easy to implement in a general Monte 
Carlo ray-tracer and easy to tune via a single refinement parameter.

In addition to important gains in the convergence rate, the quanti
tative and qualitative results showed that this combined model out
performs the individual variance reduction techniques on which it 
is based. The method consequently appears as a promising step 
towards interactively rendering global illumination effects via self
tuning estimators that learn to become effective based on the infor
mation previously collected during the rendering process itself.
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Figure 5: The Sponza Atrium illuminated by a directional light with 1 - 
bounce global illumination, rendered using (from top to bottom) SMC 
importance sampling and control variates (1024 spp), SMC impor
tance sampling alone (1066 spp), SMC control variates alone (1059 
spp), MCMC BRDF importance sampling (1144 spp) all in 2.6 hours.

Figure 6: The Conference Room shaded with ambient occlusion, ren
dered using (from top to bottom) SMC importance sampling and con
trol variates (256 spp), SMC importance sampling alone (261 spp), 
SMC control variates alone (258 spp), and MCMC BRDF importance 
sampling (274 spp) all in 43 minutes.
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Figure 7: David with a Phong BRDF illuminated by the Grace Cathe
dral environment map, rendered using (from top to bottom) SMC im
portance sampling and control variates (1024 spp), SMC importance 
sampling alone (1074 spp), SMC control variates alone (1026 spp), 
and MCMC BRDF importance sampling (1203 spp) all in 1.8 hours.

Figure 8: Screenshots of the Sibenik Cathedral during an interactive 
session rendered progressively using SMC importance sampling and 
control variates (left) and MCMC BRDF importance sampling (right) 
by keeping the camera steady (from top to bottom) for 4 seconds, 15 
seconds, 1 minute and 4 minutes.
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