
Parallel Methods for Isosurfacc Visualization

Tushar Udeshi Steven Parker Charles Hansen Peter Shirley

Department of Computer Science

University of Utah

50 S. Campus Center Drive, M E B 3190

Salt Lake City, Utah

84112-9205

{tudeshi | sparker | hansen | shir ley}@cs.utah.edu

Abstract

isosurface extraction and vis utilization is crucial for explorative scientific visualiza­

tion of extremely large scientific data. The shear number of polygons extracted and the

subsequent rendering time limit interactivity. We explore two solutions to this problem:

exploiting parallel graphics hardware and parallel isosurface extraction/rendering via

ray-tracing. We experimentally compare multi-pipe rendering that uses parallel binary-

swap compositing/rendering and parallel isosurface extraction/rendering through ray-

tracing,

1 I n t r o d u c t i o n

Many applications generate scalar fields p(xyyyz) which can be viewed by displaying

isosurjaces where p(xyyyz) — p[so- Ideally, the value for p | s o is interactively controlled

by the user. When the scalar field is stored as a structured set of point samples, the

most common technique for generating a given isosurface is to create an explicit polygonal

representation for the surface using a technique such as Marching Cubes [9], This surface

is subsequently rendered with attached graphics hardware accelerators such as the SGI

Infinite Reality. Marching Cubes can generate an extraordinary number of polygons, which

take time to construct and to render. For very large (i.e., greater than several million

polygons) surfaces the isosurface extraction and rendering times limit the interactivity. In

this paper, we address this problem by two distinct methods. One method addresses the

rendering problem by using multiple graphics adapters in parallel
1

. The second method

generates images of isosurfaces directly with no intermediate surfa.ee representation through

the use of ray tracing.

2 H a r d w a r e B a s e d P a r a l l e l R e n d e r i n g

The use of parallelism in computer graphics hardware is widely known. Most current

generation graphics adaptors utilize parallelism in their design and implementationfl, 2, 11],

While these systems are extremely proficient at rendering geometry, the bottleneck for

rendering large polygon sets is the speed at which polygons can be sent through the graphics

pipeline
2

. Since there is a single thread which can send polygons to the graphics adaptor, the

1

Thc so called SGI 0nyx2 Reality Monster.

"For 3D texture mapping based volume rendering, the bottleneck is typically pixel nil-rate. We limit onr

application to explicit polygon rendering.

1

2

majority of rendering applications are serial and implicitly exploit the parallelism inherent

in the graphics adaptor.

For scientific visualization of very large data sets, 512
3

 and higher, parallel isosurface

extraction and rendering techniques have been studied[3, 5, 6, 14]. These techniques exploit

the large memory and parallelism of massively parallel computers to deal with the data

explosion caused by scientific visualization of the large simulations running on the same

machines. These techniques mimic, in software, the parallelism in the graphics hardware

and achieve speedup although not at interactive rates. One of the problems with these

approaches is the lack of an attached framebufier or graphics adaptor for displaying and

interacting with the image.

Clearly what is desired is a combination of these approaches which takes advantage

of the large memory and parallelism provided by large-scale parallel computers and

the interactive rendering capabilities provided by graphics hardware. Fortunately, we

have recently seen the convergence of these two with the SGI O N Y X 2 which is an

SGI Origin 2000 with attached InfiniteReality graphics adaptors[12]. SGI O N Y X 2 with

multiple InfiniteReality graphics adaptors are called Reality Monsters. While these promise

acceleration based on parallelism on both the macro scale (multiple graphic adaptors) and

the micro scale (internal to each graphics adaptor), these systems are new and methods for

exploiting them have not been studied. This section addresses an approach to exploiting

the multiple graphics adaptors for polygon rendering.

2 .1 P a r a l l e l G r a p h i c s H a r d w a r e A p p r o a c h

The basic idea behind our algorithm is to divide the renderable data among the available

graphics adapters, render each subset separately and locally, and combine the resulting

partial images in an incremental fashion. This technique is strongly related to composition

based volume renderers in that each graphics adapter renders a portion of the final image

and these are combined[4]. It is similar to the composition network approach of Pixel

Flow[l l] although Pixel Flow utilized custom designed hardware while our method exploits

existing commercial hardware..

2 .1.1 B ina ry Swap Assume n is the total number of polygons representing an isosurface

and g is the number of graphics adapters. Typically p is a power of two although this is

can be relaxed through simple extensions. We assume the isosurface, ri, exists in shared

memory. Each graphics adapter loads and locally renders njg polygons. At this point,

each graphics adapter has a partially complete image, these images with the corresponding

z-bufi*ers are then composited onto the graphics adapter used for the final display. We use

the binary-swapmethod for image composition which composites the image in log2{g) steps.

At each step, the graphics pipes send the top half of their active image to their partner

and receive the bottom half from their partner. The partners are determined as being 2*

away where i is the compositing step. Thus when utilizing 8 graphics adapters, for the

first composite the partners are [(0,1), (2,3), (4,5), (6,7)] and for the second composite the

partners are [(0,2), (1,3), (4,6), (5,7)]. Composition of the incoming image with the current

image is done in hardware making use of the stencil buffer. This has the effect of maximizing

hardware usage and scales better with image size than performing the composite with the

CPUs. The active image is reduced by half at each step. At the end of log2{g) levels,

the active image on each graphics adapter is composited into the display graphics adapter.

Figure 1 shows the compositing steps. The bottom row shows the results of rendering the

initial polygon distribution on each graphics pipe. The gray areas in the images are back

3

-jj. Q£ graphics pipes Time in Sees speedup

1 9.23 1.0

2 6.33 1.45

4 4.06 2.27

8 2.93 3.15

TABLE 1

Scalability results for 10M polygon data set using a 1024x1024 Image

facing polygons. The three compositing levels are the next three rows up. The compositing

partners are shown with lines between the compositing levels.

2 .2 R e s u l t s

We have tested our technique with a variety of large polygon data sets. In this section, we

present the results. In all tests, we compare our technique with the best (non-compositing)

single pipe version. The rendering code is all written in OpenGL.

For the first example, we wanted to stress the multipipe rendering system to understand

where the tradeoiTs were for this technique. Recall, our goal is to render extremely large

polygon data sets such as those one would see generated from 1GByte data sets. If we lower

the number of polygons, we would expect the overhead from the multiple graphics adapters

to limit the speed up. In fact, for sufficiently small polygon sets, we would expect the

single graphics adapter to out-perform multiple graphics adapters. To test this, we take a

131,000 triangle isosurface generated from a CT scan. To test the scaling of polygon count,

we instantiated multiple copies of this data, from 2 up to 8 copies. This provided a series

of polygon data sets which varied from 131K to 1M polygons. We rendered these with 1 to

8 graphics adapters. To mitigate instantaneous timing anomalies, we rendered each frame

100 times. The results are shown in Figure 2 and Figure 3 for 512 x 512 and 1024 x 1024

images respectively. The X-axis is the size, in triangles, of the isosurface being rendered.

The Y-axis is the time in seconds for rendering 100 images. As is shown in the plots, for the

1024x1024 image the single graphics pipe out performs the multiple pipes for the isosurface

containing 131,000 triangles. This is to be expected since the overhead of reading back

the frame buffers and compositing in the multiple graphics adapters case adds overhead

and the rendering speed of the Infinite Reality graphics adapters can easily handle that

modest number of polygons. However, once the polygon count increases to 262K triangles,

the multiple graphics adapters out perform the single graphics pipe for all cases. The

improvement for multiple graphics pipes steadily increases as the polygon count increases.

One can notice the difference between the 512x512 and 1024x1024 images. In the 512x512

case, the multiple graphics adapters are always faster than a single graphics adapter, even

on this small number of polygons! The overhead of reading back and re-writing to the

graphics adapters (the compositing step) for the larger images in the 1024x1024 case results

in slower rendering times for low numbers of polygons. The overhead predominates for the

131K triangle case. However, as the polygon count increases to 1M triangles, the overhead

becomes less of the overall time and the cost for rendering a 1024x1024 image reduces to

near the cost of a 512x512 image.

Table 1 shows the scaling of this technique using one through eight graphics adaptors.

For the next example, we extracted the isosurface representing the skin for the head

portion of the visible woman data set (see Figure 1). The isosurface is composed of 1.4

4

-------t-·---.--- .
I

1- - - - - - - - - - - - - - - -.:r -------.... ---. ------------ --~ . •

. ; .

I :·················:·T················~
.---....I.---;-: .. -... -.... -... -..., .. : ~

l __ I_~ ____ 1

I I
r--'- I

Pipe 0 Pipe 1 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6 Pipe 7

FIG. 1. The co'fflJ)()8'it'iu.Q le'vel", aTt' alon.Q the 'oeri'feat 0,:1;';'''' and the .Qraph'fc8 adapter.'> are alon.Q

the horizontal 0,:1;';''''' AjZer the j£nal 8tep (the top 'ffHJ.'>i le'vel). the j£nal 'frnage 'f'" CO'fflI)().'wd frorn each

of the pari'fat hnage8.

5

FIG. 2. Times for rendering a 512 x 512 image

FIG. 3. Times for rendering a 1024
 x

 1024 ifff^ge

million triangles. We again instantiated multiple copies of this data with 2, 3, and 4 copies

resulting in 2.8M, 4.2M, and 5.6M polygon isosurfa.ee data sets. Figure 4 and Figure 5 show

the results for both 512x512 and 1024x1024 images. Notice that the rendering times are

very close with the 512x512 image being slightly faster for rendering with larger numbers of

graphics pipes. This is due to the increased number of steps in the compositing operations

with an increased number of graphics pipes. However, with even a modest 1.4M polygons, 8

graphics adapters outperforms a single graphics adapter by a factor of 2. For 5.6M polygon

data set, 8 graphics pipes outperforms a single graphics pipe by 6 times.

FIG. 4. Times for rendering a 512 x 512 image for 1J{ to 5.0 million polygons

6

1 pipe

F l G . 5. Times for rendering a 1024
 x

 1024 Wfrnge for 1J{ to 5.0 million polygons

3 R a y - t r a c i n g I s o s u r f a c e E x t r a c t i o n

An alternative to extracting geometry and employing parallel graphics hardware to

interactively render very large isosurfaces is to leverage the parallel CPUs to generate

an image without extracting intermediate geometry. Our next algorithm generates images

of isosurfaces directly with no intermediate surface representation through the use of ray

tracing. Ray tracing for isosurfaces has been used in the past (e.g. [8, 10, 16]), but we

apply it to very large datasets in an interactive setting. Details necessary to implement

this technique can be found in [15].

The basic ray-isosurface intersection method used in this technique is shown in Figure 6.

Conventional wisdom holds that ray tracing is too slow to be competitive with hardware

z-bufTers. However, when rendering a surface from a sufficiently large dataset, ray tracing

should become competitive as its low time complexity overcomes its large time constant [7].

The same arguments apply to the isosurfacing problem. Suppose we have an n X n X n

rectilinear volume which for a given isosurface value has 0(n
2

) polygons generated using

Marching Cubes. Given intelligent preprocessing, the rendering time on g graphics adaptors

will be 0(n
2

/g). If a ray tracing algorithm is used to traverse the volume until a surface is

reached, we would expect each ray to do 0(n) work. If the rays are traced on p processors,

then we expect the runtime for an isosurface image to be 0 (r i / p) , albeit with a very large

time constant and a limit that p is significantly lower than the number of pixels. For

sufficiently large ri, ray tracing will be faster than a z-bufi*er algorithm for generating and

rendering isosurfaces. The question is whether it can occur on an n that occurs in practice

(e.g., n — 500 to n — 1000) with a p that exists on a real machine (e.g., p — 8 to p — 128).

This paper demonstrates that with a few optimizations, ray tracing is already attractive

for at least some isosurface applications.

3 . 1 T h e A l g o r i t h m

Our algorithm has three phases: traversing a ray through cells which do not contain

an isosurface, analytically computing the isosurface when intersecting a voxel containing

the isosurface, shading the resulting intersection point. This process is repeated for each

pixel on the screen. Since each ray is independent, parallelization is straightforward. An

additional benefit is that adding incremental features to the rendering has only incremental

cost. For example, if one is visualizing multiple isosurfaces with some of them rendered

transparently, the correct compositing order is guaranteed since we traverse the volume in

a front-to-back order along the rays. Additional shading techniques, such as shadows and

specular reflection, can easily be incorporated for enhanced visual cues. Another benefit is

r

FIG. 0. A ray Is Intersected directly with the Isosurface. No explicit surface Is computet"

FIG. 7. The ray traverses each cell (left), and when a cell is encountered that has an Isosurface

in It (light), an analytic ray-Isosurface intersection computation Is performed,

the ability to exploit texture maps which are much larger than texture memory.

3 .2 R a y - I s o s u r f a c e I n t e r s e c t i o n

If we assume a regular volume with even grid point spacing arranged in a rectilinear array,

then the ray-isosurface intersection is straightforward. Analogous simple schemes exist for

intersection of tetrahedral cells, but the traversal of such grids is left for future work. This

work will focus on rectilinear data.

To find an intersection (Figure 7), the ray a-j-th traverses cells in the volume checking

each cell to see if its data range bounds an isovalue. If it does, an analytic computation is

performed to solve for the ray parameter I at the intersection with the isosurface:

p{xu + tXbjVa + LVb,Za + tZb) - p[so = 0.

When approximating p with a trilinear interpolation between discrete grid points, this

equation will expand to a cubic polynomial in I. This cubic can then be solved in closed

form to find the intersections of the ray with the isosurface in that cell. Only the roots of

the polynomial which are contained in the cell are examined. There may be multiple roots,

corresponding to multiple intersection points. In this case, the smallest I (closest to the

eye) is used. There may also be no roots of the polynomial, in which case the ray misses

the isosurface in the cell. The details of this intersection computation and the associated

optimizations needed for an interactive system can be found in [15].

3 .3 R e s u l t s

We applied the ray tracing isosurface extraction to interactively visualize the Visible Woman

dataset. The Visible Woman dataset is available through the National Library of Medicine

as part of its Visible Human Project [13]. We used the computed tomography (OT) data

which was acquired in 1mm slices with varying in-slice resolution. This data is composed

FIG. 8. Ray tracings of the skin and bone Isosurfaces of the Visible Woman (see color page).

Isosurface Traversal Intersec. Shading FPS

Skin (p - 600.5) 55% 22% 23% 7-15

Bone {p= 1224.5) 66% 21% 13% 6-15

TABLE 2

Data From Ray Tracing the Visible Woman. The frames-per-second (FPS) gives the observec

range for the Interactively generated viewpoints on 64 CPUs.

of 1734 slices of 512x512 images at 16 bits. The complete dataset is 910MBytes. Rather

than down-sample the data with a loss of resolution, we utilize the full resolution data in

our experiments. As previously described, our algorithm has three phases: traversing a

ray through cells which do not contain an isosurface, analytically computing the isosurface

when intersecting a voxel containing the isosurface, and shading the resulting intersection

point.

Figure 8 shows a ray tracing for two isosurface values. Figure 9 illustrates how shadows

can improve our the accuracy of our geometric perception. Table 2 shows the percentages

of time spent in each of these phases, as obtained through the cycle hardware counter in

SGFs speedshop. As can be seen, we achieve about 10 frames per second (FPS) interactive

rates while rendering the full, nearly 1GByte, dataset.

Table 3 shows the scalability of the algorithm from 1 to 128 processors. View 2 is

simpler than view 1, and thus achieves higher frame rates. Of course, maximum interaction

is obtained with 128 processors, but reasonable interaction can be achieved with fewer

processors. If a smaller number of processors were available, one could reduce the image

size in order to restore the interactive rates. Efficiencies are 91% and 80% for view 1 and

2 respectively on 128 processors. The reduced efficiency with larger numbers of processors

(> 64) can be explained by load imbalances and the time required to synchronize processors

9

FIG. 9. A ray tracing with and without shadows (see color page).

at the required frame rate. These efficiencies would be higher for a larger image.

4 C o n c l u s i o n s

We have presented two parallel methods for the visualization of isosurfaces which utilize

different mechanisms for acceleration. Both are effective although for different applications.

The interactiveness of the ray-tracing technique provides visualization of an isosurface at

a higher frame rate than is possible with the multipipe hardware solution. This is due to

the geometry extraction and surface construction time needed for the multipipe hardware

solution.

However, it is often very useful to perform quantitative analysis on the isosurface.

For example, one frequently would like to know the volume bounded by an isosurface of a

particular value. Similarly, with the explicit surface, it is possible to examine quantitatively

the difference between surfaces. With the ray-tracing solution, one only has the final

image and such evaluations are limited. On the other hand, spatial relationships are better

understood through interacting with the isosurface and the ray-tracing solution is well

suited for this style of data exploration.

R e f e r e n c e s

[1] Kurt Akeley. Reality Engine graphics. 27:109 116, August 1993.

[2] Kurt Akeley and Tom Jermoluk, High-performance polygon rendering. Computer Graphics,

22(4):239 246, August 1988. ACM Siggrapli '88 Conference Proceedings.

[3] David A. Ellsworth, A new algorithm for interactive graphics on multicomptiters, IEEE

Computer Graphics and Applications, 14(4), July 1994,

10

View 1 View 2

of CPUs FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0

2 0.36 2.0 0.79 2.0

4 0.72 4.0 1.58 4.1

8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1

16 2.89 16.1 6.31 16.2

24 4.33 24.1 9.47 24.3

32 5.55 30.8 11.34 29.1

48 8.50 47.2 16.96 43.5

64 10.40 57.8 22.14 56.8

96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

TABLE 3

Scalability results for ray tracing the bone Isosurface In the visible human. A 512x512 Image

was generated using a single view of the bone Isosurface,

[4] Kwan-Lul Ma et al. Parallel volume renderer using binary-swap Image composition, IEEE

Computer Graphics and Applications, 14(4), July 1994,

[5] C, Hansen and P, Hhiker, Massively parallel Isosurface extraction. In Proceedings of

Visualization "92, pages 77 83, October 1992,

[G] C, Hansen, M, Krogh, and W, White, Massively parallel visualization: Parallel rendering. In

Proceedings of SI AM Parallel Computation Conference, February 1995,

[7] James T, Kajiya, An overview and comparison of rendering methods, A Consumer's and

Developer's Guide to Image Synthesis, pages 259 2G3, 1988, ACM SIggraph '88 Course 12

Notes,

[8] Chyi-Cheng Lin and Yu-Tai Clung, An efficient volume-rendering algorithm with an analytic

approach. The Visual Computer, 12(10):515 52G, 199G.

[9] William E, Lorensen and Harvey E, Cllne. Marching cubes: A high resolution 3d surface

construction algorithm. Computer Graphics, 21(4):1G3 1G9, July 1987, ACM SIggraph '87

Conference Proceedings,

10] Stephen Marschner and Richard Lobb, An evaluation of reconstruction filters for volume

rendering, hi Proceedings of Visualization "94- pages 100 107, October 1994,

11] Steven Mohiar, John Eyles, and John Poult on, Pixelflow: High-speed rendering using Image

composition. Computer Graphics, 2G(2):231 240, July 1992, ACM SIggraph '92 Conference

Proceedings,

12] John Montrym, Daniel Baum, David Dlgnam, and Christopher Migdal, Infinltereahty: A

real-time graphics system, 2G:293 302, August 1997,

13] National Library of Medicine (U.S.) Board of Regents, Electronic Imaging: Report of the

board of regents, u,s, department of health and human services, public health service, national

institutes of health. NIH Publication 90-2197, 1990.

14] F, Ortega, C, Hansen, and J, Ahrens, Fast data parallel polygon rendering. In Proceedings of

Supercomputing '93, pages 709 718, November 1993,

15] Steven Parker, Peter Shirley, Yarden Llvnat, Charles Hansen, and Peter-Pike Sloan, Interactive

ray tracing for Isosurface rendering. In Proceedings Visualization '98, 1998,

1G] Milos Sramek, Fast surface rendering from raster data by voxel traversal using chessboard

distance. In Proceedings of Visualization "94, pages 188 195, October 1994.

