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ABSTRACT

The medial axis of an object is a shape descriptor that intuitively presents the

morphology or structure of the object as well as intrinsic geometric properties of the

object’s shape. These properties have made the medial axis a vital ingredient for shape

analysis applications, and therefore the computation of which is a fundamental problem

in computational geometry. This dissertation presents new methods for accurately

computing the 2D medial axis of planar objects bounded by B-spline curves, and the

3D medial axis of objects bounded by B-spline surfaces. The proposed methods for the

3D case are the first techniques that automatically compute the complete medial axis

along with its topological structure directly from smooth boundary representations.

Our approach is based on the eikonal (grassfire) flow where the boundary is offset

along the inward normal direction. As the boundary deforms, different regions start

intersecting with each other to create the medial axis. In the generic situation, the

(self-) intersection set is born at certain creation-type transition points, then grows

and undergoes intermediate transitions at special isolated points, and finally ends at

annihilation-type transition points. The intersection set evolves smoothly in between

transition points. Our approach first computes and classifies all types of transition

points. The medial axis is then computed as a time trace of the evolving intersection

set of the boundary using theoretically derived evolution vector fields. This dynamic

approach enables accurate tracking of elements of the medial axis as they evolve and

thus also enables computation of topological structure of the solution.

Accurate computation of geometry and topology of 3D medial axes enables a new

graph-theoretic method for shape analysis of objects represented with B-spline surfaces.

Structural components are computed via the cycle basis of the graph representing the

1-complex of a 3D medial axis. This enables medial axis based surface segmentation,

and structure based surface region selection and modification. We also present a new



approach for structural analysis of 3D objects based on scalar functions defined on their

surfaces. This approach is enabled by accurate computation of geometry and structure

of 2D medial axes of level sets of the scalar functions.

Edge curves of the 3D medial axis correspond to a subset of ridges on the bounding

surfaces. Ridges are extremal curves of principal curvatures on a surface indicating

salient intrinsic features of its shape, and hence are of particular interest as tools for

shape analysis. This dissertation presents a new algorithm for accurately extracting

all ridges directly from B-spline surfaces. The proposed technique is also extended

to accurately extract ridges from isosurfaces of volumetric data using smooth implicit

B-spline representations. Accurate ridge curves enable new higher-order methods for

surface analysis. We present a new definition of salient regions in order to capture

geometrically significant surface regions in the neighborhood of ridges as well as to

identify salient segments of ridges.

iv



For Puja



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition and Local Structure of Medial Axis . . . . . . . . . . . . . . . . . . . . 6
1.3 Properties of Medial Axis (2D and 3D) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Applications of Medial Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Ridges: Definition, Properties and Applications . . . . . . . . . . . . . . . . . . . 10
1.6 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 2D Medial Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 3D Medial Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 B-spline Representation for Curves and Surfaces . . . . . . . . . . . . . . . . . . . 28
3.3 Nonlinear Multivariate B-spline Root

Solving Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. 2D MEDIAL AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Transition Points and Transition Events . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Medial Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



5. RIDGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Computing Seed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6. 3D MEDIAL AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Transition Points and Transition Events . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Curve Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Medial Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Multisurface Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7. SHAPE ANALYSIS USING MEDIAL AXES AND RIDGES . . . . . 104

7.1 Structural Analysis of 3D Medial Axes Using
Graph Cycle Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Shape Analysis Using Scalar Functions
on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Ridges from Isosurfaces of Volumetric Data . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Geometrically Significant Regions Associated

with Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vii



LIST OF FIGURES

1.1 2D medial axis of a planar region bounded by a closed curve. An example
of a regular point (A2

1) in purple, end point (A3) in cyan, and junction
point (A3

1) in red is indicated along with their maximal circles. . . . . . . . . . 3

1.2 A 3D object represented by B-splines shown in (a) and its medial axis
shown in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Ridges and crests of a femur B-spline surface model. . . . . . . . . . . . . . . . . . 5

1.4 Medial axis point types. Surface S shown in grey, surface points in red,
medial axis points in blue. In (a)-(d), medial axis surfaces are also shown
in grey. Arrows point in the corresponding surface normal direction. . . . . 9

3.1 Patterns of principal curvature lines around umbilics. κ1 curvature lines
are indicated in pale blue and κ2 curvature lines are in magenta. . . . . . . . 28

3.2 Examples of B-spline geometry. (a) a B-spline curve. (b) a B-spline
surface. Control points are shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Subdivision based approach for root subdomain isolation. . . . . . . . . . . . . . 31

3.4 Expression tree for fi = a(u1) + b(u2)c(u3, u4)− d(un). . . . . . . . . . . . . . 32

4.1 Medial axis viewed as evolving self-intersections of the boundary under the
eikonal (grassfire) flow. A self-intersection is created at the cyan colored
point. The self-intersection point evolves with time to trace out a medial
axis curve segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Transition events at (a) A3 type critical point, (b) and (c) A2
1 type critical

point, (d) and (e) A3
1 type transition point. Transition points are shown

in cyan, green and red and the evolving A2
1 curves are shown in black. . . . 41

4.3 Normals n, n̂ of different regions of an offset curve γ, γ̂ at time t. The
evolution vector field ξ is tangent to the medial curve. . . . . . . . . . . . . . . . 42

4.4 Medial axis in augmented parameter-time space R
3
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CHAPTER 1

INTRODUCTION

In the late 1960s, Harry Blum introduced a geometric construct called the medial

axis [13]. Blum’s motivation was to identify a shape descriptor that would enable

computational shape analysis in a manner that emulates the perceptual processes in

the human visual system. It was originally described for planar two-dimensional (2D)

shapes in order to characterize families of biological objects [13]. The concept was later

extended to the three-dimensional (3D) case.

The medial axis intuitively presents the morphological structure of an object as a

whole and intrinsic geometric properties of an objects’ shape such as local thickness (also

called local feature size [4]). Further, geometric properties of the object boundary can

be computed directly from geometric properties of the medial axis [33]. Therefore, it is a

shape descriptor that has become a vital ingredient for a variety of computational shape

analysis applications that involve recognizing, comparing, analyzing and synthesizing

objects. Many advantages of using the medial axis for such applications are outlined in

a recent book on the subject [118]. Psychophysical experiments have confirmed that the

medial axis is a very effective construct for shape perception [118]. With mild license of

interpretation, one might see a stick figure drawing of a young child as a naive quest to

abstract the essence of shape. Whether fundamentally tenable or not, this observation

suggests that the medial axis concept is both natural and effective.

1.1 Problem Statement

This dissertation addresses the computation of the interior medial axis of objects

directly from parametric B-spline representations of their boundaries. In particular, we

consider the following two situations when the object encloses a:
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1. 2D planar region, and is represented as a closed parametric B-spline curve.

2. 3D region, and is represented as a set of parametric B-spline surfaces.

This dissertation presents new approaches for accurately computing the medial axis

and its correct topological structure for objects of both cases listed above. The key

concept underlying the proposed approaches for the 2D as well as the 3D case builds

on Blum’s original definition of the medial axis in terms of the grassfire flow. First, we

present the approach for the 2D case, then extend it to the 3D case. Because of the

increased complexity in structure, the extension of the approach to the 3D case is not

straightforward. Whereas the 2D medial axis consists of a set of curve segments, the

3D medial axis consists of surfaces and curves as well as special isolated points. Hence,

the term axis is misleading for the 3D case. Nonetheless, we follow this nomenclature

since it is widely accepted in the existing literature. In this research, we address the

computation and analysis of the part of the medial representation that is interior to the

object.

Figure 1.1 shows a planar object bounded by a B-spline curve and its medial axis

computed using the approach presented in this dissertation. The medial axis consists

of curve segments, one for each bump of the shape, that are connected at some of the

segments’ end points to form a graph structure. We address accurate computation of all

curves and end points of the segments, as well as the topology of the graph structure.

Figure 1.2 shows an object in 3D bounded by a B-spline surface and its medial axis

computed using the approach presented in this dissertation. The object consists of a

base on which a protrusion is attached. This structure is captured clearly in the medial

representation by a medial surface for each region and a junction curve where they meet

indicated in thick yellow. Medial surfaces are also bounded by edge curves indicated in

thick blue, that can meet junction curves at fin points highlighted as purple spheres.

The 3D medial axis may also contain 6-junction points where junction curves meet.

We address accurate computation of all such entities in a manner that assumes correct

topological structure.

Most existing techniques for computing the medial axis (2D or 3D) require discrete

representations of the boundary curves or surfaces. Discrete approximations of smooth
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Figure 1.1. 2D medial axis of a planar region bounded by a closed curve. An example
of a regular point (A2

1) in purple, end point (A3) in cyan, and junction point (A3
1) in

red is indicated along with their maximal circles.
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(b)

Figure 1.2. A 3D object represented by B-splines shown in (a) and its medial axis
shown in (b).
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boundary representations introduce artifacts that are not part of the medial axis of

the original smooth representations. Considerable effort, usually manual and hence

time-consuming, is required to prune such artifacts. Several discrete techniques present

approximations of the medial axis as a set of discrete elements (points in 2D or polygons

in 3D) without topological structure. Considerable effort is required to infer this

information in a process typically requiring extensive human interaction and is therefore

tedious and time-consuming.

This dissertation presents the first techniques that automatically compute the com-

plete interior medial axis along with its topological structure directly from smooth

B-spline boundary representations. B-splines are a widely used form of smooth geometry

representation and have many useful properties including variation diminishing and

convex hull properties that support robust and efficient computation strategies [29].

1.1.1 Subproblem

Edge curves of the 3D medial axis correspond to a subset of ridges on an object’s

surface linking sharp curvature related geometric features of the object’s shape to its

structure. While the medial axis characterizes the form of an object, ridges indicate

features on an object’s surface. Ridges have been used for several shape analysis

applications, and are therefore addressed in detail in this dissertation. Most existing

techniques for computing ridges require discrete representations of surfaces and, as

a result provide limited accuracy, sometimes giving extraneous or spurious results.

We present a new technique for accurately computing ridges directly from B-spline

surfaces in a manner that manifests them as connected curve segments. Edge curves

of the 3D medial axis are then derived from the extracted ridges. Using the proposed

computational technique, Figure 1.3 shows ridges, and a special type of ridge called a

crest, for a B-spline surface model of the upper part of a femur bone.

1.1.2 General Solution Framework

The proposed techniques for computing ridges and medial axes follow the general

bottom-up framework of initially computing lower dimensional entities that are then

used to compute higher dimensional entities, i.e., proceeding from points to curves to
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Femur Ridges Crests

Figure 1.3. Ridges and crests of a femur B-spline surface model.

surfaces. Identifying all lower dimensional entities at which the topology of the solution

transitions enables accurate computation of the topology of the entire solution.

The problems are further formulated in a dynamic setting that enables solutions to

be computed as they are born, evolve and interact, and ultimately die. The general

theoretical framework for the dynamic approach was developed by James Damon.

We build on some of Damon’s results in singularity theory, and subsequent work by

Xianming Chen employing it to solve geometric problems that arise in a dynamic

setting [26]. By treating the construction of the medial axis as a dynamic problem

instead of a static one, this dissertation presents a new application of that theoretical

framework.

For the part of the solution that is isolated points, the proposed research formulates

them as roots of a system of geometric equations involving terms of the smooth B-spline

representation of an object’s boundary and its associated differential properties. These

are typically nonlinear, high degree equations. With recent advances in multivariate

nonlinear B-spline constraint solving techniques, addressing such problems has become

more computationally tractable.
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1.1.3 Additional Information from Accurate Solutions

Ridges and medial representations often exhibit complicated behaviors. Although

the local structure of ridges and medial representations is well documented in the

existing literature, existing approaches for computing ridges and medial representations

provide limited information about local structure. Equipped with topologically accurate

solutions, this dissertation also presents new techniques to analyze the structure of

the solutions and identify suitable subsets. A complete list of contributions of this

dissertation is presented in Section 1.6.

1.1.4 The Genericity Assumption

Generic properties of ridges and medial representations are well documented in the

existing literature (See Sections 1.2 and 1.5.1). This research addresses such situations

for which generic properties hold. The term generic includes “almost all ”situations in

the precise mathematical sense [33]. Assuming generic properties allows us to design

algorithms that compute the topology of the solution with efficient algorithms. Later,

we present special case examples where the genericity assumption is relaxed.

1.2 Definition and Local Structure of Medial Axis

In presenting the definitions of the medial axis for the 2D and 3D case separately,

we also include a summary of the complete list of all generic local forms of the medial

axis, as presented in [50] for the 2D case, and in [51] for the 3D case.

1.2.1 2D Medial Axis

Definition 1 The medial axis of a planar region enclosed by a bounding curve C is the

closure of the locus of centers of maximally inscribed circles that are tangent to at least

2 points on C.

A complete characterization of the local structure of the 2D medial axis for generic

regions is presented in [50]. Following the notation given in [50], a point of tangency

of a maximally inscribed circle is of Ak type if the circle has order k contact with the

boundary curve. Only the values k = 1 or 3 occur in the generic situation for medial

axis points. When k = 1, the circle is tangent to the curve at the contact points.
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For k = 3, in addition to the tangency property, the radius of the circle is a radius of

curvature of the corresponding contact point on the curve and the curvature function

at the contact point on the curve has a maximum value. A medial axis point whose

maximal circle has m contact points of A1 type is denoted by Am
1 . For each medial axis

point, our work maintains the set of parameter values corresponding to each contact

point on the boundary and the distance to the boundary (radius of maximal circle) in

addition to the coordinate values of the center of the circle.

The medial axis of a generic 2D object is a set of curve segments whose end points

satisfy special properties [50]. The 2D medial axis consists of the following point types

(illustrated in Figure 1.1):

1. A2
1 curves. The locus of A2

1 points is a medial curve consisting of points whose

maximal circle is tangent to 2 points on the curve.

2. A3 end points. The maximally inscribed circle is in contact with 1 point on the

curve with A3 type. An A3 point indicates the start or end of an A2
1 curve segment.

3. A3
1 junction points. The maximal circle at an A3

1 point is tangent to 3 points on

the curve. An A3
1 point occurs at the location where 3 A2

1 curves meet.

1.2.2 3D Medial Axis

Definition 2 The medial axis of a region in R3 enclosed by a bounding surface S is

the closure of the locus of centers of maximally inscribed spheres that are tangent to at

least 2 points on S.

A complete characterization of the local structure of the 3D medial axis for generic

regions is presented in [51]. For a maximally inscribed sphere, a point of tangency on

the boundary is of Ak type
1 if the sphere has k−th order contact with the boundary [51].

Only the values k = 1 or 3 occur in the generic case for medial axis points. When k = 1,

the sphere is tangent to the surface at the contact point. When k = 3, in addition to

1We use the A
m

k
notation for both the 2D and 3D cases, and their interpretation will be clear from

the context in which they are presented
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the tangency property, the radius of the sphere is also the radius of principal curvature

of the corresponding contact point on the surface and the contact point on the surface

is a ridge point. The definition of a ridge point is presented in Section 1.5. A medial

axis point with a maximal sphere with m points of tangency is denoted Ak1Ak2 · · ·Akm ,

and the type for a sphere with m A1 contact points will be abbreviated to Am
1 . For

each medial axis point, our work maintains the set of parameter values corresponding

to each contact point on the boundary and the distance to the boundary (radius of

maximal sphere) in addition to the coordinate values of the center of the sphere.

The medial axis of a generic 3D object consists of the following surface, curve and

point entities [51] (See Figure 1.4 for illustrations of each medial axis point types):

1. A2
1 surfaces. The set of medial surfaces consists of the locus of all A2

1 points each

with a maximal sphere tangent to two points on the surface.

2. A3 edge curves. The maximally inscribed sphere at an A3 point exhibits contact

with an elliptic ridge point on the surface (See Section 1.5). The locus of A3

points is a set of curve segments or loops that partially or completely bound A2
1

surfaces.

3. A3
1 junction curves. The maximal sphere at an A3

1 point is tangent to three points

on the surface. The locus of A3
1 points is a set of curve segments or loops that

partially or completely bound A2
1 surfaces. Three A2

1 surfaces meet along an A3
1

curve.

4. A1A3 fin points. At such a point, an A3 curve segment meets an A3
1 curve segment

and it marks the beginning/end of each curve. The maximal sphere at an A1A3

point is in contact with two surface points - one with A1 type and the other with

A3 type contact.

5. A4
1 6-junction points. The maximal sphere at an A4

1 point is tangent to four points

on the surface. Such points occur when six A2
1 surfaces meet. This can also be

viewed as points where four A3
1 curves meet.
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(a)A2
1 (b)A3 (c)A3

1 (d)A1A3 (e)A4
1

Figure 1.4. Medial axis point types. Surface S shown in grey, surface points in red,
medial axis points in blue. In (a)-(d), medial axis surfaces are also shown in grey.
Arrows point in the corresponding surface normal direction.

1.3 Properties of Medial Axis (2D and 3D)

The medial axis has a number of interesting properties, some of which are listed

below. These properties hold for both the 2D and the 3D case.

1. The medial axis of an object in R
n, n = 2, 3 generically has dimension R

n−1.

Hence, this is a lower dimensional representation of the shape of an object.

2. An object and its medial axis are homotopy equivalent [82, 116]. The medial axis

of an object captures the connectivity structure of the object.

3. The medial axis of an object bounded by a G1 boundary is a strong deformation

retract of the boundary [116]. This implies that if the boundary is path connected,

so is its medial axis.

4. The medial axis augmented with the radius of the corresponding maximally

inscribed balls is called the medial axis transform. Given a medial axis and a valid

radius field defined on it, the boundary of an object can be reconstructed [33, 51].

Further, the geometric properties of the boundary of an object can be determined

from the geometric properties of its medial axis [33].

5. It is a well known fact that medial axes are sensitive to perturbations to the

boundary of an object. It has been noted based on experimental observation that

perturbations appear as fluctuating branches in the medial axis [5]. The full set

of generic transitions of the medial axis under deformations of the boundary are

characterized in [50, 52].
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1.4 Applications of Medial Axis

Although medial axes computed using existing algorithms have limited accuracy and

topological correctness, they have proven to be a vital ingredient in many application

areas spanning diverse domains. A recent survey of application areas of medial axes

“From the infinitely large to the infinitely small”object scales is presented in Chapter

11 of [118]. Approximate medial representations of anatomical objects have increased

the accuracy of medical image analysis techniques [99] and enabled more accurate and

meaningful statistical analyses of anatomical structures [71], thereby greatly enhancing

research in medicine. 2 Medial axes have also been used for solid modeling [12], creating

accurate volumetric models for engineering analysis such as stress calculations and

aerodynamic simulations, searching databases of 3D objects for applications such as

product design reuse and protein matching [119], surface segmentation [108], robot

motion planning algorithms [48], and many other areas across science and engineering.

Hierarchical multiscale methods requiring structural information of medial representa-

tions have vast potential for improving the efficiency of computationally demanding

applications [71, 119].

1.5 Ridges: Definition, Properties and Applications

Ridge curves mark important intrinsic features of the shape of a surface. Consider

a parametric surface S(u, v) ∈ R3. Every point on S(u, v), excluding umbilics, has

two different principal curvatures (κ1 > κ2) and two corresponding principal directions

(t1, t2) where t1 and t2 are 2D vectors, with the two elements of each vector denoting

coefficients of Su and Sv, respectively, at S(u, v), for the principal directions. Ridges

are defined in [59, 102] as follows:

Definition 3 Ridges are loci of points on a surface where one of the principal curva-

tures attains a critical value (i.e., local maximum, minimum or inflection) along its

corresponding principal direction.

2also see http://midag.cs.unc.edu/MIDAG FS.html
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φi(u, v) = 〈∇κi, ti〉 = 0, i = 1 or 2 (1.1)

Other definitions of ridge-like structures in the existing literature include those of

height ridges [40] and watershed ridges [90]. This dissertation addresses the extraction

of principal curvature ridges following Definition 3.

Mathematical details of the derivation of Equation 1.1 are presented in [59]. In this

research, we will henceforth refer to φi(u, v) as the ridge function and Equation 1.1

as the ridge condition for the corresponding principal curvature. Table 1.1 presents a

classification of the various types of ridges. A ridge is called elliptic if κ1 (κ2) at a ridge

point attains a local maximum (minimum) along its corresponding principal direction,

and termed hyperbolic otherwise. Crests, valleys, and ravines are other frequently used

terms in the existing literature to describe extremal curves of curvature. A crest is an

elliptic ridge of the principal curvature with larger magnitude (See Table 1.1). The crest

curve corresponding to the minimum principal curvature is typically called a valley or

a ravine. Crests indicate perceptually salient ridges on a surface. It should be noted

that some authors prefer to define ridges as the crest corresponding to the maximum

principal curvature, while others refer to crests as κ1-ridges, where |κ1| ≥ |κ2|. In this

research, the term ridges encompasses crests, elliptic, and hyperbolic ridges.

1.5.1 Generic Properties of Ridges

Various aspects of the generic behavior of ridges on surfaces are summarized in this

section (See [19, 20, 21, 76, 102] for discussions and proofs).

1. Two different ridges of the same principal curvature do not cross each other,

except at umbilics. This property significantly reduces the complexity of ridge

computation.

2. κ1-ridges may cross κ2-ridges at so called purple points.

3. Ridges of a particular principal curvature do not have start or end points on a

surface (excluding the boundary of an open surface), except at umbilics.

4. Although principal directions are not defined at umbilics, ridges do occur at

umbilics and exhibit complex behavior around umbilics.
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Table 1.1. Classification of Ridges
Ridge Type Definition

κ1-ridge φ1
def
=< ∇κ1, t1 > = 0

κ2-ridge φ2
def
=< ∇κ2, t2 > = 0

Elliptic ridge φ1 = 0, tT1Hκ1t1 < 0

φ2 = 0, tT2Hκ2t2 > 0

Hκi
=

[
κiuu κiuv

κiuv κivv

]
, i = 1, 2

Crest φ1 = 0, tT1Hκ1t1 < 0, |κ1| > |κ2|

(κ2-crest: ravine or valley) φ2 = 0, tT2Hκ2t2 > 0, |κ1| < |κ2|

5. Elliptic ridges, and therefore crests, do not contain umbilics.

6. An umbilic may be classified as either a 1-ridge umbilic or a 3-ridge umbilic

depending on the number of ridges arriving at the umbilic.

7. Ridges of a principal curvature intersect its corresponding principal direction

transversally on the surface (R3) except at a few isolated locations. This property

enables tracing ridges on local coordinate systems formed by principal directions

on a surface.

8. Locations on the surface where a ridge is tangential to the corresponding principal

direction are called turning points (also known as A4 points in geometry and sin-

gularity theory). Turning points are detected using this property in the approach

presented in this research.

9. At a turning point, a ridge attains a local inflection in the corresponding prin-

cipal direction and changes from being elliptic to hyperbolic or vice versa. This

condition is given by tTi Hκi
ti = 0, i = 1 or 2. Alternatively, Property 8 allows
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identification of turning points without computing second order derivatives of

curvatures.

10. A ridge of one principal curvature may be tangential to the other principal

curvature direction on the surface (R3), i.e., a κ1-ridge may be tangential to

the minimum curvature direction and vice versa. A good example is the equator

of an ellipsoid.

1.5.2 Applications of Ridges

The formal mathematical study of the role of ridges in geometry began with the re-

search of Porteous [101] and was first emphasized for shape analysis by Koenderink [76].

Since then, ridges have proven valuable in a variety of applications spanning diverse

domains. They are view independent curves and more stable with surface deformation

compared to other feature curves such as curvature lines, which makes them very useful

for shape matching [56, 73, 98, 122]. They are useful in visualization applications since

they capture perceptually salient features of an object [30, 68, 84]. Other applications

include freeform surface quality control [66] and geophysical analysis [83, 124].

1.6 Research Contributions

This dissertation presents the following contributions:

1. 2D Medial Axis

(a) Computation of accurate 2D medial axis from B-spline boundary

curve. A new approach is presented for automatically computing medial

axes of two-dimensional objects accurately along with correct topological

information and that does not generate nonmedial artifacts.

(b) Structural analysis of 3D objects using scalar functions defined

on their surfaces. We introduce a computational procedure to obtain

structural information of 3D objects by computing 2D medial axes of level

sets of scalar functions defined on the object surfaces.



14

2. 3D Medial Axis

(a) Computation of accurate 3D medial axis from B-spline boundary

surface(s). A new approach is presented for automatically computing me-

dial axes of three-dimensional objects accurately along with correct topolog-

ical information and that does not generate nonmedial artifacts.

(b) Shape analysis using structural features of 3D medial axis. A new

graph-theoretic technique for inferring, representing and analyzing structural

components of medial axes is presented. The topological structure of the

medial axis computed using the techniques presented in this work enables

application of the graph based analysis technique directly for objects repre-

sented with B-splines.

3. Ridges

(a) Ridge extraction from B-spline surfaces. A new algorithm is presented

to accurately extract all generic ridges directly from B-spline surfaces. The

smooth surface representation enables straightforward classification accord-

ing to their subtypes.

(b) Ridge extraction from isosurfaces of volumetric data. The algorithm

is extended to compute ridges from volumetric data using implicit B-spline

representations that enables accurate computation of ridges with improved

quality.

(c) New method for identification of salient ridges and associated salient

regions. Current techniques only use information at ridge points. We

present a new technique that uses geometric information in the neighborhood

of ridges to not only identify salient subsets of ridges but also to identify

geometrically salient regions of surfaces around ridges.

1.7 Dissertation Outline

This dissertation is organized as follows. Related work on the computation of medial

axes in 2D and 3D, as well as ridges, is presented in Chapter 2. Relevant mathematical
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background on differential geometry of curves and surfaces, the B-spline representation

and its properties, as well as a summary of the existing approaches for subdivision

based nonlinear geometric equation solving, is presented in Chapter 3. Chapter 4

presents the technique for computing 2D medial axes. Computation of ridge curves

is addressed in Chapter 5. Chapter 6 presents the technique for computing 3D medial

axes. New techniques for enriching computed medial axes and ridges for shape analysis

are presented in Chapter 7. The contributions of this dissertation are summarized and

concluded in Chapter 8.



CHAPTER 2

RELATED WORK

There has been tremendous interest over the last forty years in automatically com-

puting medial axes of objects. This chapter presents a review of the techniques used

for computing medial axes from smooth as well as discrete surface representations. The

approaches can be broadly classified into Voronoi, distance field, eikonal and tracing

based methods. We first present related work for the 2D medial axis in Section 2.1 and

then for the 3D medial axis in Section 2.2. Many of the techniques presented for the

discrete 2D case have analogous extensions to the 3D case, and we present references

to both. This is by no means an exhaustive review, but enlists representative works in

each area. Extensive surveys are presented in [118, 11].

Section 2.3 presents a review of existing techniques for computing ridges on surfaces.

We cover methods that require discrete as well as smooth surface representations.

2.1 2D Medial Axis

2.1.1 Piecewise Smooth Representations

The tracing approach of [105] accurately computes medial axes of objects bounded

by freeform curves. The method assumes that the object has at least one convex vertex

(sharp corner point). A2
1 curve segments of the medial axis are numerically traced from

convex vertices. A3
1 points are detected during tracing using distance and curvature

checks and two new A2
1 curves are spawned. Tracing ends either at a convex vertex

or at an A3 point which is detected using a curvature check during tracing. Since the

method assumes that there is a convex edge on the curve, it is not suitable for computing

medial axes bounded by planar curves without sharp corners.

An offset-based technique much like the eikonal flow for computing the medial axis of

planar regions bounded by connected sets of line segments and circular arcs is presented
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in [58, 57]. Transition points of the medial axis are determined using special geometric

tests for combinations of line segments and circular arcs. Medial axis curve segments

are then determined by computing offsets of the boundary contour. In their work,

freeform spline curves are first approximated with line segments and circular arcs and

the medial axis of the approximated boundary is then computed. There exist other

techniques for computing approximate medial axes of freeform boundary curves that

also use approximations of the boundary with simpler geometric entities such as line

segments and circular arcs [2, 42, 62].

Several algorithms for computing the Voronoi diagram of regions with curve sites,

which is closely related to the medial axis, have been presented [103, 28, 112, 60].

Differences between the Voronoi diagram and the medial axis are presented in [103].

An algorithm for computing the Voronoi diagram of planar NURBS curves based on

computing bisector curves, critical points and trimming is presented in [112]. Error-

bounded bisector curves are computed from the zero set of the distance function between

curve pairs. Critical points including local and global intersection points of offset curves,

and junction points of bisector curve segments are formulated as systems of geometric

equations and computed using subdivision based constraint solving techniques. Bisector

curve segments are then trimmed at critical points using distance checks to retain

valid Voronoi segments. A similar approach for computing the Voronoi cell of a planar

NURBS curve against a set of other curves is presented in [60]. An algorithm that

incrementally adds Voronoi diagram segments from curve bisectors is presented in [103,

104]. Nonmedial segments and are removed and missing medial segments are added in

a postprocessing step in their approach.

2.1.2 Discrete Images

Thinning methods attempt to simulate the grassfire flow by an erosion like process

of image pixels starting from the object boundary [77, 130]. Thinning methods are

sensitive to Euclidean transformations of the image data and do not always guarantee

single pixel width medial axes. Siddiqi et al. [117] simulate Blum’s grassfire flow on

discrete grids using partial differential equations to detect singularities of the flow based
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on the average outward flux of the flow. Pixels corresponding to the medial axis are

detected by combining the flux measurement with a homotopy preserving thinning

process. Techniques based on discrete representation of distance fields on the image

grid are presented in [128].

2.1.3 Point Sampled Boundary Curves

The Voronoi diagram of a set of point samples of a curve converges to the medial axis

of the region as the sampling density increases [110, 17]. Several methods exploit this

property by first computing Voronoi diagrams of the point samples and then identifying

suitable subsets that belong to an approximation of the medial axis. Representative

examples of such techniques include [94, 17]. Selection of pruning thresholds selecting

subsets of Voronoi diagrams is an open problem [100].

2.1.4 Polygons

Since polygons represent a boundary as a collection of line segments, they form a

subset of boundary representations consisting of line segments and circular arcs and

hence, any of the approaches presented in [58, 2, 62] may be applied to obtain the

medial axis.

2.2 3D Medial Axis

2.2.1 Piecewise Smooth Representations

The tracing approach of [106] seems to be the closest to obtaining accurate medial

representations of objects bounded by piecewise smooth surfaces. The method assumes

that the object has at least one convex vertex (corner point). A3
1 junction curves (termed

seams in their paper) are numerically traced from convex vertices. Six junction points

are detected during seam tracing using distance to surface checks and three new junction

curves are spawned. Seam tracing ends either at a convex vertex or at an A3 point which

is detected using a curvature distance check at every seam point. That paper presents

ideas for computing interiors of medial sheets using bisectors of corresponding surfaces

or numerical tracing; however, no results are presented. Since the method assumes

that there is a convex edge on the surface that is part of bounding loop for a sheet, it
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does not extend to medial representations with A3 boundary curves that may end at

fin points.

Bisectors of pairs of freeform surfaces are considered as building blocks of medial

representations. Accurate techniques for computing bisectors of rational parametric

surfaces are presented in [44]. However, there is no technique in the existing literature

to identify all medial entities (such as fin points, six junction points) and their topology

from the bisector surfaces. A similar technique based on bisectors of CSG objects is

described in [64] but no results are presented.

A method for computing the 3D medial axis of extruded and revolved objects

bounded by freeform surfaces is presented in [107]. The method computes the 2D

medial axis of a planar profile face which is then transformed (extruded or revolved) to

obtain a 3D medial axis.

2.2.2 Volumetric Images

A variety of techniques based on thinning of voxel data grids in an erosion like process

starting from the object surface have been presented as surveyed in [77, 130]. Siddiqi

et al. [117] simulate Blum’s grassfire flow on discrete grids using partial differential

equations to detect singularities of the flow based on the average outward flux of the

flow. Medial skeleton voxels are detected by combining the flux measurement with

a homotopy preserving thinning process. Methods that rely on the computation of

distance fields are presented in [16, 7]. These techniques typically identify height ridges

of the distance fields as medial voxels and perform thinning to obtain single voxel width

approximations.

2.2.3 Point Clouds

Algorithms for computing medial representations from point sampled surfaces typi-

cally begin with computing Voronoi diagrams of the point sets and then identify medial

skeletons as subsets of the Voronoi graphs. Amenta et al. [3, 4] identify a subset

of Voronoi vertices called poles as medial skeleton points and compute a piecewise

linear approximation of the medial skeleton using the connectivity of the poles in a

weighted Voronoi diagram called the power diagram. Dey and Zhao [38, 39] use scale
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and sampling density independent conditions to prune Voronoi diagrams. The λ-medial

axis [24] selects a subset of the Voronoi diagram such that the maximal balls have radius

of at least λ. Their result is a simplified approximation of the medial skeleton that

preserves the homotopy type of the input object.

2.2.4 Polygonal Meshes

Approaches for computing medial representations of polygonal meshes can be clas-

sified into distance field methods [49], Voronoi methods [123] and tracing methods [31,

115]. Foskey et al. [49] analyze the gradient of the distance field to the surface to identify

medial skeletons. A polygonal approximation that has the same homotopy type as the

medial skeleton is computed as a subset of the Voronoi diagram in [123]. Methods

based on tracing seam curves and computing intersections of seam curves are presented

in [31, 115]. It should be noted that the seam curves are different from junction curves

(loci of A3
1 points) of generic medial skeletons. Seam curves arise due to the piecewise

linear representation of the object surfaces.

2.2.5 Limitations of Existing Methods

Mathematical properties of the medial axis are well documented in the existing

literature. However, to date state of the art techniques have been able to compute pieces

of medial representations only for simplified approximations of objects. In addition,

only approximate or simplified solutions using discrete techniques and partial solutions

using higher order methods have been computed due to the complexity in structure

and inherent nonlinearity of the medial axis. Existing discrete techniques are typically

computationally fast. However, discrete techniques introduce artifacts that are not part

of the medial axis and considerable effort is required to remove them. In addition, the

output of existing techniques is typically a set of discrete elements without connectivity

and structural information. Considerable manual effort is required in order to infer

this information. This dissertation proposes a new higher order method, in conjunction

with results from singularity theory, to automatically compute medial axes of regions

bounded by B-splines accurately along with correct structural information and which

does not generate nonmedial artifacts.
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2.3 Ridges

This section presents a survey of existing methods for extracting ridges from various

surface representations including smooth surfaces such as polynomials, B-splines and

implicit functions, and discrete surface representations including isosurfaces of volumet-

ric grid data and polygonal meshes. For discrete representations, estimating curvatures

and their derivatives is a significant challenge. Smooth functions are typically used

to estimate these quantities on the vertices of the tessellation. Approximate ridge

points are identified on the edges and faces of the tessellation by linear interpolation

of the ridge function estimates at the corresponding vertices. For C3 smooth surface

representations, curvatures and their derivatives can be computed exactly at any point.

Ridges form continuous curves on smooth surfaces and extracting them accurately is

more difficult.

2.3.1 Parametric Surfaces

Previous results on computing ridges of parametric surfaces can be classified into

two categories: 1) lattice approach, and 2) sampling based methods. The research

presented in Cazals et al. [19, 20, 21] falls into the first category. In [20], a system of

equations that encodes all the ridges and umbilics of a parametric surface represented

by a single polynomial is presented. This system is essentially the product of the

ridge conditions for both the principal curvatures. An algorithm is presented to solve

the resulting polynomial equations using algebraic techniques [19, 21], and to compute

topologically correct ridges. Their research presents the first technique to compute the

topology of ridges exactly at umbilics. Examples have been provided for single patch

Bézier surfaces. The results computed using the technique presented in this research

are validated with an example from their research.

Other prior results for computing ridges on parametric surfaces fall into the second

category. A method based on sampling the ridge condition on the curvature lines

of a parametric surface and reporting a collection of points (without connectivity

information) that satisfy the ridge condition (within some error criteria) is presented

in Hosaka [66]. The notion of crest bands has been introduced in Jefferies [69]. Crest

bands are soft ridges that satisfy the ridge condition within a given threshold at uniform
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samples in the parametric domain. This technique is also used for comparison and

validation of the results presented in this research. A similar approach for sampling

the ridge condition on a regular rectangular grid in the parametric space of a surface

represented by thin-plate splines and connecting neighboring ridge points on the grid has

been presented in Guéziec [56]. Approximation of ridges on the edges of a triangulation

of the parametric domain has been presented in Kent et al. [73] and Morris [93]. In

the research presented by Morris [93], umbilics are first detected and ridge points are

identified on circles surrounding the umbilics.

Away from umbilics, classical tracing methods via solutions of ordinary differential

equations (ODEs) representing the ridges may be employed. However, such methods

require higher order surface smoothness and are computationally more demanding

than the proposed method since derivatives of the ridge condition are required. In

our experiments, much smaller step sizes were required by the ODE based method

for achieving the same accuracy as the proposed algorithm. In addition, singular

points of the ridge condition are required for robust tracing via ODEs and the task of

locating such points is computationally demanding due to the complexity of the ridge

condition and its derivatives. Due to all the above reasons, the proposed algorithm is

computationally more suitable than ODE based methods for ridge tracing.

2.3.2 Implicits

A discrete method for computing intersections of an implicit function defining the

surface and the ridge function is presented in [10]. An analytic solution for computing

solutions of a system of equations describing ridges of a polynomial implicit function

using a singularity theory approach is presented in [14]. The authors suggest using the

implicit representation for discrete data but no results are presented. In our work, we

adopt this idea but use a different approach to extract ridges using a different repre-

sentation, piecewise polynomial implicit B-splines, that enables a global representation

of large complicated discrete data sets.
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2.3.3 Volumetric Data

The Marching Lines algorithm [127] presented a discrete technique to compute ridge

curves on level sets of volumetric scalar fields such as medical images (MRI, CT scans).

The technique computes intersection curves of an isosurface and the ridge function φi

on the voxels of the data set. The Gaussian extremality, which is the product of the

ridge functions φ1 and φ2, was introduced in [126] and used to extract ridges from

3D images. The Gaussian extremality overcomes the problem of finding consistent

principal direction orientations for evaluating the ridge functions. However, κ1 and

κ2 ridges cannot be distinguished when computed as zeros of the Gaussian extremality.

This causes additional errors in determining the topology of ridges around regions where

a κ1 ridge intersects a κ2 ridge as noted in [22]. An image filtering approach is presented

in [92] to first identify points on an isosurface and classify them as ridge points if they

satisfied the ridge equation. Curvatures and their derivatives are estimated at required

points using image filters in both techniques. In the work of [56], parametric B-splines

are fit to isosurfaces and a discrete sampling technique is used to determine ridge curves

on the isosurfaces.

2.3.4 Polygonal Meshes

Curvatures and their derivatives are estimated at mesh vertices by locally or globally

fitting smooth surfaces using compactly supported radial basis functions [95], poly-

nomials [129, 22, 121], MLS based implicit functions [74] or using discrete methods

[63, 129]. Ridges are traced by detecting zero crossings of the ridge function on the

vertices and edges of the meshes. Umbilics and ridges around them are detected in

the method presented in [22]. All other approaches address only crests. Smoothing of

the ridge function (as opposed to the surface) as well as smoothing crest space curves

themselves was proposed in [63] to obtain crests with fewer undulations. Local angle

measures between end points of crest segments have been used for connecting disjoint

segments[129].
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2.3.5 Limitations of Existing Approaches

Directly solving for the zero sets of the ridge condition is computationally expensive

in terms of memory and processing time. In addition, to the best of our knowledge, there

is no technique in the existing literature that can accurately compute the topology of

ridges of NURBS surfaces at all locations from a disjoint set of ridge points. The authors

of [19, 21] note that at the time of writing (2007), their technique for processing single

polynomial surfaces was too slow to compute results in reasonable time for a bi-quintic

Bézier patch. A domain tessellation or sampling-based method, albeit computationally

fast, has other disadvantages. It is hard to obtain accurate ridges (exact zeros of the

ridge condition) and connectivity information, especially at umbilics.

Existing approaches for extracting ridges from discrete data representations, in-

cluding polygonal meshes and isosurfaces of volumetric data, tend to result in sets of

disconnected ridge segments or tend to have undesirable undulations. There are several

potential factors that contribute to this problem. First, most of the earlier techniques

address only crests. However, crest curves on a smooth surface can turn into noncrest

ridges that may, in turn, change back to crests. Extracting only crests therefore results

in a disconnected subset of ridges. Second, curvatures and derivatives are typically not

available with discrete data and hence are estimated. Being functions of the second

and third order surface derivatives, respectively, this process is very sensitive to noise.

Consequently, the quality of ridges extracted depends on the quality and consistency

with which these quantities are estimated. In addition, fragmentation of the ridges can

occur due to inconsistent choices of principal direction vector orientations [63] and when

ridges are near parallel to mesh edges [129]. Our aim is to overcome the aforementioned

problems with the discrete techniques and to extract all types of ridges for which generic

conditions hold.



CHAPTER 3

BACKGROUND

This chapter presents a brief summary of results from the study of differential

geometry of curves and surfaces, B-spline representation of curves of surfaces, and

nonlinear multivariate B-spline root solving techniques that are used in this dissertation.

3.1 Differential Geometry

In this section, we review fundamental results on differential geometry that are

utilized in this research. For details, the reader is referred to [29, 96, 97].

3.1.1 Curves

Consider a planar parametric curve γ(u) : [u1, u2] → R2, γ ∈ C2. The tangent to

the curve at any point is given by

T = γu (3.1)

where subscripts indicate partial derivatives with respect to the parameter variable.

The curvature of the curve is given by

κ(u) =
‖ γu × γuu ‖

‖ γu ‖3 (3.2)

The normal to the curve is given by

N =
γu × γuu

‖ γu × γuu ‖ − γu
‖ γu ‖ (3.3)

The curve normal, as defined by Equation 3.3, flips directions discontinuously at

points where κ = 0. Suppose γ(u) lies in the XY plane without loss of generality.

Then γu = [γ
(x)
u γ

(y)
u 0]T is a vector in the XY plane. Then, Equation 3.4 represents

consistently oriented normals and avoids flips. This representation is sometimes referred
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to as the manufacturing normal, a term arising from its application in computer-aided

manufacturing.

N = [0 0 1]T × γu (3.4)

3.1.2 Surfaces

3.1.2.1 Principal Curvatures and Principal Directions

Consider a parametric surface S(u, v) : [u1, u2] × [v1, v2] → R3, S ∈ C2. The

unit-length surface normal, n(u, v) = Su×Sv

||Su×Sv ||
(assumed oriented inward for a closed

surface, and ||Su × Sv|| 6= 0 since S is regular) where, subscripts indicate the partial

derivatives with respect to the corresponding parameter variable. The matrix of the

first fundamental form of the surface is given by,

I =

[
E F
F G

]
=

[
< Su, Su > < Su, Sv >
< Su, Sv > < Sv, Sv >

]
(3.5)

The matrix of the second fundamental form is given by,

II =

[
L M
M N

]
=

[
< Suu, n > < Suv, n >
< Suv, n > < Svv, n >

]
(3.6)

Let A, B, C be defined as follows.

A = EG− F 2

B = 2FM −GL− EN
C = LN −M2

(3.7)

Then, the principal curvatures at a point on the surface are given by,

κ1 =
−B +

√
B2 − 4AC

2A
; κ2 =

−B −
√
B2 − 4AC

2A

κ1 ≥ κ2

(3.8)

κ1 is termed the maximum principal curvature and κ2 is termed the minimum principal

curvature. The corresponding principal curvature directions (nonunit magnitude) are

given by,

t1 =

[
t11
t21

]
=

[
−(M − κ1F )
L− κ1E

]
or

[
−(N − κ1G)
M − κ1F

]

t2 =

[
t12
t22

]
=

[
−(M − κ2F )
L− κ2E

]
or

[
−(N − κ2G)
M − κ2F

] (3.9)

The coefficients in the above equation are chosen so that the principal direction

vectors are nondegenerate and as well-conditioned as possible. If only one of the vectors

is well-conditioned, the following property enables computation of the other vector.
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3.1.2.2 Orthogonal Property of Principal Directions

The model or Euclidean space vectors, denoted by T1 and T2 are given by,

T1 = t11Su + t21Sv

T2 = t12Su + t22Sv

(3.10)

T1 and T2 lie in the tangent plane at S(u, v) spanned by Su and Sv. If κ1 6= κ2, then

< T1, T2 >= 0, so the two principal directions are orthogonal at all nonumbilic points

on the surface. (see lemma 12.47 of [29] or [96]). This property enables tracing on a

surface using local coordinate systems formed by T1 and T2 at nonumbilic points.

3.1.2.3 Three Types of Umbilics

Umbilics are points on the surface at which the normal curvatures in all directions

are equal. Therefore, κ1 = κ2 and principal directions are not defined. However, lines

of curvature exhibit three different patterns around generic umbilics denoted as the

lemon, star, and (le)monstar patterns. Figure 3.1 shows the three different patterns

formed by the principal curvature lines around umbilics. At a lemon umbilic, there

is a single principal direction that changes from being a maximum curvature principal

direction to a minimum curvature principal direction. At a star umbilic, there are three

such principal directions. A monstar umbilic is similar to a star umbilic, except that

all maximum (minimum) curvature directions are contained within a right angle.

3.1.2.4 Principal Directions Around Umbilics

Maekawa and Patrikalakis [86, 97] presented a technique to classify umbilics as

lemon, star and monstar, and to compute exact principal direction patterns around

umbilics. The principal directions were used in their work to trace curvature lines on a

surface around umbilics. We employ this method to characterize behavior of ridges near

umbilics. The idea is to represent the surface locally as a Monge patch in a reference

frame centered at the umbilic and aligned with the tangent space of the surface at the

umbilic. Then, the position vectors of the local maxima and minima of the Monge

patch around the umbilic in the tangent space represent the maximum and minimum

principal direction vectors. Details of this method can be found in [97]. Their approach
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Lemon Star Monstar

Figure 3.1. Patterns of principal curvature lines around umbilics. κ1 curvature lines
are indicated in pale blue and κ2 curvature lines are in magenta.

also detects nongeneric umbilics. We have not found any literature characterizing the

behavior of principal curvature lines and ridges around nongeneric umbilics and hence

chose not to address them in this research.

At generic umbilics, there can either be a single maximum and minimum (lemon) or

three maxima and minima (star and monstar). Maxima and minima occur on opposite

sides of each other, i.e., the angle between their position vectors is π. This phenomenon

is shown in Figure 3.1, where the relevant maximum and minimum principal directions

are opposite to each other.

3.2 B-spline Representation for Curves and Surfaces

3.2.1 B-spline Curves

A B-spline curve (piecewise polynomial) [29] is given by,

γ(u) =
n∑

i=0

RiBi,d(u) (3.11)

Ri are the control vertices of γ(u). Bi,d(u) are B-spline basis functions of degree d. Let

Γ = {τp}(n+d+1)
p=0 be the corresponding knot vector. The support of Bi,d(u) = [τi, τi+d+1).

It should be noted that the upper end of each interval is open. γ(u) is defined over the

interval [τd, τn+1). Figure 3.2 (a) shows a B-spline curve and its control points.

B-spline basis functions are piecewise polynomial, i.e., they are polynomial functions

within each knot interval. The smoothness at each knot is determined by its multiplicity.

Let π be the set of unique knots (breakpoints) and µ be the multiplicities of each

breakpoint. Then, at each breakpoint πp, γ(u) ∈ C(d−µp). The derivatives of γ(u) are



29

(a) (b)

Figure 3.2. Examples of B-spline geometry. (a) a B-spline curve. (b) a B-spline
surface. Control points are shown in red.

right continuous at a knot but γ(u) fails to be C l when the lth derivatives are not left

continuous at the knot.

3.2.2 Tensor Product B-spline Surfaces

A tensor product B-spline surface [29] is given by,

S(u, v) =
m∑

i=0

n∑

j=0

RijBi,d(u)(u)Nj,d(v)(v) (3.12)

Rij are the control vertices of S(u, v). Bi,d(u)(u) and Nj,d(v)(v) are B-spline basis

functions of degrees d(u) and d(v), respectively. Let Γ(u) = {τ (u)p }(m+d(u)+1)
p=0 and γ(v) =

{τ (v)q }(n+d(v)+1)
q=0 be the knot vectors in the u and v parametric directions, respectively.

The support ofBi,d(u)(u) = [τ
(u)
i , τ

(u)

i+d(u)+1
) and the support ofNj,d(v)(v) = [τ

(v)
j , τ

(v)

j+d(v)+1
).

It should be noted that the upper end of each interval is open. S(u, v) is defined over

the interval [τ
(u)

d(u)
, τ

(u)
m+1) × [τ

(v)

d(v)
, τ

(v)
n+1). Figure 3.2 (b) shows a B-spline surface and its

net of control points.

Let π(u) and π(v) be the set of unique knots (breakpoints) and µ(u) and µ(v) be the

multiplicities of each breakpoint in the u and v parametric direction, respectively. Then,

at each breakpoint π
(u)
p , S(u, v) ∈ C(d(u)−µ

(u)
p ) in the u direction and at each knot π

(v)
q ,

S(u, v) ∈ C(d(v)−µ
(v)
q ) in the v direction. The derivatives of S(u, v) are right continuous
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at a knot but S(u, v) fails to be C l when the lth derivatives are not left continuous at

the knot.

3.2.3 Properties of B-spline Curve and Surfaces

B-spline curves and surfaces exhibit two important properties that enable robust and

efficient computation strategies, especially for multivariate nonlinear equation solvers

as presented in Section 3.3.

1. Variation diminishing property. Consider a planar B-spline curve γ(u) and a

polyline connecting all of its control points. A horizontal line will intersect γ(u)

no more often than it will intersect the control polyline. In other words, a B-spline

curve cannot have more undulations than its control polyline. A similar notion

for B-spline surfaces exists.

2. Convex hull property. A B-spline curve or surface is completely contained

within the convex hull of its control points.

3.3 Nonlinear Multivariate B-spline Root
Solving Techniques

At several points in this dissertation, simultaneous roots of a set of nonlinear

equations are required. The equations are derived from geometric properties of B-spline

curves and surfaces, and are hence represented as multivariate B-splines.

Consider a system of n equations in n unknowns as shown in Equation 3.13. Each

equation fi = 0 is an n−variate scalar valued B-spline function. The goal is to

compute all simultaneous roots of this system of equations. Each root is an n−tuple of

corresponding parameter values (u1, u2, . . . un). We will refer to n as the dimensionality

of the system.

f1(u1, u2 . . . un) = 0
f2(u1, u2 . . . un) = 0
. . .
fn(u1, u2 . . . un) = 0

(3.13)

From the variation diminishing and convex hull properties of B-spline functions, we

can deduce that fi does not have a root if all of its control points (that are scalars) are
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either less than or greater than zero. This result enables a divide-and-conquer strategy

to successively identify smaller subdomains of the multivariate functions fi, i = 1..n

in the n−dimensional space where simultaneous solutions exist as presented in [45].

B-spline subdivision is used to split domains into successively smaller regions until only

a single solution exists within each subdomain. Subdomains that do not contain a

root are pruned. Figure 3.3 shows an example of the B-spline subdivision approach for

isolating a subdomain that contains a single root. For each candidate subdomain that

contains a single solution, a numerical scheme such as a multivariate Newton’s method

is used to converge to an accurate solution. The approach presented in [45] enables

computation of all roots of a system of nonlinear equations.

An equation typically consists of a set of terms, with each term represented as a

multivariate B-spline function. For example, suppose fi = a(u1) + b(u2)c(u3, u4) −
d(un), where a, b, c and d are scalar valued B-spline functions. In [45], symbolic B-spline

operations (addition, subtraction and multiplication) are used to represent fi as a single

Figure 3.3. Subdivision based approach for root subdomain isolation.
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B-spline function of u1, u2, . . . un. A computational drawback of this approach is that

the number of control points of a multivariate B-spline function grows exponentially

with the number of dimensions. Therefore, computational complexity as well as space

requirements to store the B-spline control points increase exponentially with increasing

dimensionality. High degree equations also increase the computation time to perform

B-spline operations. Further, B-spline subdivision increases the total number of control

points over all subdomains. These drawbacks render this framework prohibitive for

equations with higher dimensions and degree.

An expression tree approach was recently proposed [43] to overcome some of these

limitations. This approach avoids symbolic operations on constituent terms of an

equation and instead represents each equation as an expression tree, where the leaves

are the terms and interior nodes are arithmetic operators (See Figure 3.4). Range values

of each leaf are computed using B-spline properties, and interval arithmetic is used to

aggregate range values to the root node of an expression tree. An equation contains a

root if and only if the aggregated range values contain zero. Used in conjunction with

the divide and conquer approach, where only leaf nodes are subdivided, this approach

significantly improves computation time and reduces space requirements.

+

−

*

4c(u , u )3b(u )2

d(u )n

a(u )1

Figure 3.4. Expression tree for fi = a(u1) + b(u2)c(u3, u4)− d(un).
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The expression tree approach, while being the current state of the art in the litera-

ture, still does not efficiently address high dimensional systems. We present specialized

strategies to address such problems that arise in this work. (See Sections 6.2.4, 6.2.5

and 7.3.2 for details.)



CHAPTER 4

2D MEDIAL AXIS

This chapter presents a new technique to compute the interior medial axis of a planar

region bounded by a closed parametric B-spline curve. The approach presented in this

chapter for the 2D case introduces the techniques that will be generalized to enable

computation of the 3D medial axis. Recall from Section 1.2.1 that the 2D medial axis

consists of curves bounded by end points, or junction points where three medial curves

meet. Precise mathematical definitions of each entity type are presented in the Section.

Our approach computes all entities of the medial axis with arbitrary user specified

accuracy along with correct topology. Parameter values of boundary curve points

corresponding to every medial axis point and the respective distance is also computed,

which gives the medial axis transform. Further, the method also indicates the direction

of increasing distance along medial curves at all points, giving the shock structure [50].

The chapter is organized as follows. An overview of the proposed algorithm is presented

in Section 4.1 with details in Sections 4.2 and 4.3. Results are presented in Section 4.4

and a summary of the chapter is presented in Section 4.5.

4.1 Overview

Our approach is based on Blum’s original definition of the medial axis in terms

of the grassfire flow, also called the eikonal flow. Derived from the physical analogy

of a burning field of grass, the grassfire flow follows the evolution of a fire front

started simultaneously all along the boundary of a field of grass. The fire front grows

inward isotropically until it starts to meet itself. The fire gets extinguished at all such

intersection points and the set of intersection points evolves smoothly until the fire is

completely extinguished. The medial axis in 2D is exactly the set of all points where

the fire fronts meet.
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The B-spline representation enables computation of the medial axis as a time trace

of the evolving (self-) intersection set of the boundary curve under the eikonal flow.

The eikonal flow is given by offsets of the curve along the inward normal direction.

Let B be the boundary of a region in R
2 represented by a parametric B-spline curve

C(u). The offset curve resulting from the eikonal flow at a time t is given by γ(u, t) =

C(u)+ t n(u), t ≥ 0, where n(u) is the inward directed unit curve normal. The variable

t, which is exactly the offset distance, is referred to as time to emphasize the dynamic

aspect of the algorithm. As the curve evolves under the eikonal flow in the increasing

t direction, different regions start intersecting with each other. The self-intersection

points trace out curves that grow until they reach certain end points. Figure 4.1 shows

an illustration of this behavior. It should be noted that we are concerned only with the

first intersection points of any two given points on the curve since only those intersection

points belong to the medial axis.

The eikonal flow results in the creation of special transition points where A2
1 curves

are created or get annihilated. Away from transition points, the A2
1 points evolve

smoothly to trace out A2
1 curves of the medial axis. The proposed approach presents

techniques to accurately compute all types of transition points using the B-spline

representation. A2
1 curves are then computed by evolving intersection points over time

using theoretically derived evolution vector fields. Algorithm 1 summarizes the steps

involved in computing the medial axis.

Algorithm 1 Computing 2D medial axis

1. Compute transition points and classify as creation or annihilation.

2. Trace medial axis curves from creation points until annihilation points are reached.

The eikonal flow method has been used to compute the medial axis of regions

specified within discrete scalar grids [117] (pixellated images). That method classifies

points on the discrete grid as whether or not they belong to the medial axis using

computed properties of the eikonal flow at the grid points. Our method dynamically
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(u)

medial axis

C

Figure 4.1. Medial axis viewed as evolving self-intersections of the boundary under
the eikonal (grassfire) flow. A self-intersection is created at the cyan colored point. The
self-intersection point evolves with time to trace out a medial axis curve segment.

emulates the eikonal flow using higher order methods to accurately compute the medial

axis of regions bounded by B-spline curves.

4.2 Transition Points and Transition Events

This section lists and presents techniques to compute all types of transition points

of the eikonal flow for computing the 2D medial axis. The transition points are those

points where the distance to the boundary attains a critical value. Following are the

types of all transition points of the eikonal flow for computing the 2D medial axis.

1. A3 end points

2. A2
1 critical points

3. A3
1 junction points

See Figure 1.1 for an illustration of each type of transition point. An A2
1 critical

point is indicated in green. We present geometric equations for computing all three

types of transition points. Roots of nonlinear geometric equations are computed us-
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ing adaptations of robust subdivision based techniques [45, 43]. Extensions of these

methods to improve efficiency of computing A3
1 points are presented.

4.2.1 A3 End Points

Denote the curvature of C(u) by κ(u). A3 end points of the medial axis correspond

to points on C(u) corresponding to maximum values of κ(u). These points are computed

by first solving for the roots of Equation 4.1 that gives critical point of curvature. From

the set of computed roots, those corresponding to maximum values are identified as

points on C(u) such that their centers of curvature correspond to A3 end points of the

medial axis.

∂κ(u)

∂u
= 0 (4.1)

4.2.2 A2
1 Critical Points

Let Let Ci(ui), i = 1, 2 be two representations of the boundary curve to denote

different regions.

D(u1, u2) =‖ C1 − C2 ‖2= 〈C1 − C2, C1 − C2〉 (4.2)

Taking the partial derivatives of D with respect to u1, u2, we obtain

〈C1 − C2,
∂C1

∂u1

〉 = 0

〈C1 − C2,
∂C2

∂u2

〉 = 0

(4.3)

Equation 4.3 implies that the curve normals at C1(u1) and C2(u2) must point exactly

in opposite directions as illustrated by the green points in Figure 1.1. The parameter

values corresponding to critical points of D are obtained by computing solutions of

Equation 4.3. Some solutions of Equation 4.3 may not correspond to maximal circles,

so the maximality condition must be checked for all solutions using the procedure in

Section 4.2.4. Trivial solutions where u1 = u2 are ignored. A2
1 critical points on the

medial axis are given by C1(u1)+C2(u2)
2

.
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4.2.3 A3
1 Junction Points

Let Ci(ui), i = 1, 2, 3 be three representations of the boundary curve to denote

different regions, and let Ni denote the unnormalized normals of Ci, respectively. For

a point P ∈ R
2 to be an A3

1 point, the following equations must be satisfied.

〈P − Ci,
∂Ci

∂ui

〉 = 0, , i = 1,2,3 (4.4a)

‖ P − C1 ‖ = ‖ P − Cj ‖ , j = 2,3 (4.4b)

Since P = (x, y) is unknown, Equations 4.4(a)-(b) form a system of five equations

in five unknowns. This system is reduced using the simplification techniques presented

for the surface-surface bisector example in [45] as follows.

Let P = C1 + αN1

substitute for P in ‖ P − C1 ‖=‖ P − C2 ‖
to obtain α =

−〈C1 − C2, C1 − C2〉
2〈C1 − C2, N1〉

(4.5)

Denote C1 − Ci by C1mi, i = 2, 3. Substituting for P and α in Equations 4.4(a)-(b)

and simplifying yields a system of three equations in three variables.

2〈C1m2, N1〉〈C1mi,
∂Ci

∂ui

〉− ‖ C1m2 ‖2 〈N1,
∂Ci

∂ui

〉 = 0, i = 2, 3 (4.6a)

〈C1m2, N1〉 ‖ C1m3 ‖2 − ‖ C1m2 ‖2 〈N1, C1m3〉 = 0 (4.6b)

Note that Equations 4.4(a) for i = 1 are automatically satisfied. It is possible to

solve the system of equations in 4.6(a)-(b) by using subdivision based methods directly

on the 3-variate functions [45, 43], but the computation time was fairly long. In our

experiments, a quintic B-spline curve with 50 control points required about 20 minutes

for computing A3
1 points. We present an optimized approach below that reduced the

computation time to less than a minute for the same input.

We have improved the computation time for this problem using hierarchical and

parallel computation strategies. Equation 4.6(a) for i = 2 is dependent only upon u1

and u2. Therefore, the problem size is reduced by first finding subdomains that satisfy

these two equations, and then finding subdomains that also satisfy Equations 4.6(a)-(b)
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for i = 3. Intuitively, Equation 4.6(a) for i = 2 requires two points on the curve that

are equidistant from an offset point P in R
2. The remaining equations find a subset of

those points for which there is a third curve point that is also equidistant to P .

The expression tree based approach is used to subdivide u1, u2 parametric domains

until a user specified threshold is reached while using interval arithmetic to reject

subdomains that do not satisfy Equation 4.6(a) with i = 2. Also, subdomains that do

not correspond to regions that satisfy the maximal condition are pruned. The maximal

condition is checked by computing ranges of ρ = α ‖ N1 ‖ with interval arithmetic

and testing whether 1) the range contains a part of the positive real line, and 2) is

bounded by the size of the region enclosed within C. Negative values of ρ correspond

to points outside the region since the offset would be in the outward normal direction

and thus cannot contribute to the solution. Each of the remaining subdomains along

with variables u3 is then tested with Equations 4.6(a)-(b) using subdivision along u3

parametric direction, interval arithmetic and pruning. Moreover, this step is performed

in parallel since the subdomains are independent. Trivial solutions are ignored. The

centers of remaining subdomains of ui, i = 1, 2, 3 are used in a Newton-Raphson

refinement step [45] to obtain accurate solutions and nonmaximal solutions are ignored.

This step is also performed using parallel processing techniques.

4.2.4 Maximal Condition Check

In several steps of the algorithms presented in this chapter, it is necessary to check

whether a given point P corresponds to the center of a circle with radius d is maximally

inscribed within the region bounded by B. In this work, the maximal condition is

checked by computing the closest point to P on C(u) and comparing the distance to

the closest point with the value d. Closest points are computed by first computing

points on the curve where the distance to P , given by ‖ C(u) − P ‖, attains a critical

value. Such points are obtained by finding roots of Equation 4.7

〈C − P,Cu〉 = 0 (4.7)

All roots are then inspected to select the one with the lowest distance value. For

P to correspond to a maximally inscribed circle, the smallest distance must equal d.
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The roots are computed using robust and efficient subdivision based B-spline equation

solving techniques presented in [45, 43].

4.2.5 Catalog of Transition Events

A complete list of all generic transitions of the 2D medial axis is presented in [50].

At transition points, corresponding evolution curves are either created, annihilated or

undergo intermediate transitions. We present a summary of all generic transitions for

the medial axis that are also illustrated in Figure 4.2.

1. Creation Events:

i) At an A3 point where κ has a local maximum. A new A2
1 curve segment

grows out from the A3 point. (Figure 4.2 (a)).

ii) At an A2
1 critical point where the distance to C has a local minimum. Two

new A2
1 curve segments grow out from the critical point (Figure 4.2 (b)).

2. Annihilation Events:

i) At an A2
1 critical point where the distance to C has a local maximum. Two

A2
1 curve segments flow into the critical point and end there (Figure 4.2 (c)).

ii) At an A3
1 point where three A2

1 curves flow inward and end (Figure 4.2 (d)).

For this case, the A3
1 point lies inside the triangle formed by the contact

points on the boundary curve [50].

3. Intermediate Transition Events:

i) At an A3
1 point where two A2

1 curves flow inward and a new A2
1 curve flows

outward (Figure 4.2 (e)). For this case, the A3
1 point lies outside the triangle

formed by the contact points on the boundary curve [50].

4.3 Medial Curves

This section presents evolution vector fields defined on the ambient space to trace

A2
1 curves resulting from intersections of the boundary deforming under the eikonal
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(a) (b) (c) (d) (e)

Figure 4.2. Transition events at (a) A3 type critical point, (b) and (c) A2
1 type critical

point, (d) and (e) A3
1 type transition point. Transition points are shown in cyan, green

and red and the evolving A2
1 curves are shown in black.

flow. Between transition points, the evolution vector fields are integrated to compute a

time trace of the evolving A2
1 curves that, together with the transition points, form the

medial axis.

4.3.1 Evolution Vector Field

Consider two separate regions C(u) and Ĉ(û) and denote their offsets under the

eikonal flow by γ(u, t) and γ̂(û, t). Let n and n̂ denote the unit normal vectors of C

and Ĉ respectively at a point P on an intersection curve. If P is not a transition point,

then γ and γ̂ are not parallel and hence, n and n̂ are independent. Since n and n̂ are

independent, {γu, γ̂û} are independent vector fields, and hence a basis for R
2 in the

neighborhood. Thus, in the the neighborhood of P,

n̂− n = aγu − âγ̂û (4.8)

From Equation 4.8, we define an evolution vector field, ξ, in the neighborhood of

P in R
2 given by two equivalent representations in Equation 4.9. (See Figure 4.3 for

illustration).

ξ = n+ aγu = n̂+ âγ̂û (4.9)

Proposition 4.3.1 ξ is tangent to the intersection curve of γ and γ̂ over all times t.

Proof. As γ deforms under the eikonal flow with varying t, there will be a unique

curve point for a given time t in the neighborhood of any point Q that lies within
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Figure 4.3. Normals n, n̂ of different regions of an offset curve γ, γ̂ at time t. The
evolution vector field ξ is tangent to the medial curve.

the region covered by the deforming curves. By the inverse function theorem, t is

a differentiable function in the neighborhood of Q. Consider the values of t in the

neighborhood of Q as a scalar field. Since each point on γ is deforming along the

corresponding curve normal vector n, ∇t = n. Therefore, the directional derivative of

t along n, ∇nt = 〈∇t, n〉 = 1. Further, the directional derivative of t along γu is zero

since it is in the tangent direction at γ(u). Therefore, the directional derivative of t

along ξ is ∇ξt = 〈∇t, ξ〉 = 〈∇t, n+ aγu〉 = 1.

For the moment, consider separate time variables t and t̂ for the two different curves

γ and γ̂. Define φ(Q) = t − t̂, where t (t̂) is the time when γ(γ̂) reaches Q. The

directional derivative of φ along ξ is ∇ξφ = ∇ξt−∇ξ t̂ = 1− 1 = 0. Thus, ξ is tangent

to the level curves of φ. Setting t = t̂ gives φ = 0, that correspond to intersection points

of the offset curves that are on the medial axis. Hence, ξ is tangent to the A2
1 curve at

an A2
1 point.

Thus, we can follow the evolution of the intersection curve (where the evolving

curves remain transverse) by integrating the vector field ξ with initial conditions as the

points on the intersection curve.
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dx

dt
= ξ(x), x(0) = P, x(t) ∈ R

2 (4.10)

Furthermore, define vector fields on the parameter-time space as ζ = et + aeu and

ζ̂ = et + âeû, where ei denotes the unit vector in the parameter-time space direction i,

i = t, u, û. Then, ξ = dγ(ζ) = dγ̂(ζ̂). This implies that the integral curves of the ζ are

mapped by γ to integral curves of ξ, and similarly for γ̂. The corresponding integral

curves of ζ and ζ̂ will trace the evolution of the intersections curves in the parameter

space.

4.3.2 Tracing Algorithm for A2
1 Curves

The transition points are first classified as source and sink points. A3 points and

creation type A2
1 points are source points. Annihilation type A2

1 points and annihilation

type A3
1 points are sink points. An intermediate type A3

1 point corresponds to both a

source and a sink point. Starting points are computed from each type of source point.

For each starting point, two initial points corresponding to the tangency points of an

A2
1 point are computed. The parameter values of the two initial points are then refined

to correspond to a point on the A2
1 curve using a Newton’s method for Equation 4.11.

C1 + rn1 = C2 + rn2 (4.11)

where r = rsrc + δsrc is the radius of the maximal circle at the starting A2
1 point, rsrc is

the radius of the maximal circle at the source point and δsrc is a user-specified step size

(δsrc = 10−3 was used in our examples). The projection also computes the parameter

values of the two boundary curve points corresponding to the starting A2
1 point.

Initial points are computed from the three types of source points as follows:

1. A3 point. Let u be the parameter value at the A3 point. Initial points are

computed with parameter values u+ δ and u− δ (δ = 10−3 in our experiments).

2. Creation type A2
1 point. Let u1 and u2 be the parameter values at the contact

points on C. Initial points are created at u1 + δ, u2 − δ and u1 − δ, u2 + δ.

3. Intermediate transition type A3
1 point. Initial points for a starting A2

1 point are

created at parameter values u1 and u2, that correspond to a source point. They



44

are determined as two of the three contact points for which the line segment

between them is closest to the circumcenter of the triangle formed by the three

contact points on C.

Given an A2
1 point at time t, a discrete marching algorithm is used to compute a

new A2
1 point at time t + dt using Equation 4.10. Suppose, an A2

1 point P = γ(u1, t)

evolves to a point Q = γ(u2, t + dt) after a small time dt, then u2 = (u1 + adt). The

corresponding parameter variable of γ̂ can be computed as û2 = (û1+ âdt). a and â can

be obtained by solving Equations 4.8. In order to avoid numerical errors accumulating

over time, Equation 4.11 with r = t + dt is used to project points accurately onto A2
1

curves and refine parameter values simultaneously. Starting from t = 0, Algorithm 2 is

used to compute A2
1 curves.

Algorithm 2 Computing A2
1 curves

1. Sort transition points in order of increasing time.

2. Increment t by small timestep dt.

3. If no transition points are encountered, evolve all current A2
1 points to t+ dt.

4. Otherwise, perform transition for each transition point encountered in increasing
order of t and evolve intersection curves not involved in the transition event.

5. If all transitions have been completed, then stop. Otherwise, repeat Step 2.

4.3.3 Alternate Approach for Computing Medial Curves

This section presents an alternate formulation of a vector that is tangent to A2
1

curves away from transition points. This tangent vector is defined in parametric space

and can be used in place of the evolution vector field to trace A2
1 curve segments.

Define a mapping

F (u, û, t) = γ(u, t)− γ̂(û, t) : R3
u,û,t → R

2, u 6= û (4.12)

where R
3
u,û,t is the augmented parameter space consisting of the parametric directions

of the two curves and the time domain.
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The Jacobian of the mapping F is given by

JF =

[
γ
(1)
u −γ̂

(1)
û δn(1)

γ
(2)
u −γ̂

(2)
û δn(2)

]
(4.13)

where the superscript (j) represents the j − th coordinate of the corresponding vectors

and δn = n(u)− n̂(û). Since JF has the full rank, F is differentiable.

The preimage, I, of F (u, û, t) = [0 0]T is the set of all intersection points of the two

offset curves over all time values. Since the F is a differentiable function, according to

the implicit function theorem, I is a well-defined 1-manifold in R
3
u,û,t. See Figure 4.4

for an illustration.

Let F (1) and F (2) represent the first and second vector components of F . F (1) = 0

and F (2) = 0 represent hypersurfaces in R
3
u,û,t. I is an implicit space curve that is the

locus of intersection points of the two hypersurfaces. The normals to the hypersurfaces

are given by their gradients, ∇F (1) and ∇F (2), respectively. The tangent to the

intersection curve I is given by [54]

TI = ∇F (1) ×∇F (2) (4.14)

The medial axis curve segments can then be traced by solving the differential

equation
dx

dt
= TI(x), x(0) = P, x(t) ∈ R

3
u,û,t (4.15)

T

2u

t

I

I

1u

Figure 4.4. Medial axis in augmented parameter-time space R
3
u,û,t. I is the locus of

self-intersection points of the offsets of the boundary with a tangent TI defined away
from transition points.
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Algorithm 3 is used to trace all A2
1 curves from source to sink points. Transition

points are first computed as presented in Section 4.2 and classified as source (creation)

and sink (annihilation) points. In order to avoid numerical errors from numerical

integration, points are projected onto I at each step.

Algorithm 3 Tracing A2
1 curves

INPUT SRC, SINK
OUTPUT mall, the set of all A2

1 curves
mall := ∅
for p := (u1, û1, t) ∈ SRC do
m := {p}
q := p
while q /∈ SINK do
Integrate Equation 4.15 to obtain new u1, û1 at time t+ dt
q := (u1, û1, t+ dt)
m := m

⋃{q}
end while
mall := mall

⋃
m

end for

4.4 Results and Discussion

Figures 4.5 and 4.6 (a), (b) present the 2D medial axis computed using the proposed

approach. In each example, the region of interest is bounded by a parametric quintic

B-spline curve shown in gray. In the figures, A3 points are indicated by cyan circles, A2
1

critical points by green circles, A3
1 points by red circles and A2

1 curves by thick black

curves. Also indicated by arrows on the A2
1 curves is the shock graph structure [50] that

is automatically computed using our approach.

Figure 4.7 presents a comparison of the medial axis computed in Figure 4.5 using

a discrete Voronoi-based approach [53]. Results using two different samplings of the

boundary are shown. The computed medial axis approximates the true medial axis

more accurately as the sampling density increases. Figure 4.6 (c), (d) also present

comparisons of medial axes computed using the discrete approach.

As explained in Section 4.1, the transition points are computed prior to computing

A2
1 curves of a medial axis. In addition to accurate points on the medial axis, the



47

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 4.5. Medial axis of a region bounded by a B-spline curve.

proposed approach also accurately captures the topological structure of the medial axis.

In addition, since the evolution tracing is performed in parametric space, the boundary

locations corresponding to each medial axis point as well as the corresponding distance

is also known. This gives the complete medial axis transform.

The computational complexity of the proposed algorithm is directly proportional to

the number of transition points since it bounds the total number of A2
1 curves for a

given model. The example boundary curves shown in Figures 4.5 and 4.6 contain close

to 50 control points. Running times on an Intel x64 machine with four cores and 8GB

RAM were less than a second for A3, A
2
1 transition point computation, approximately

one minute for A3
1 point computation and approximately one second for A2

1 curve

tracing. Without the optimizations for the A3
1 point computation, the running time

was approximately 20 minutes for each example. Although the total running time is

still longer than is desirable, the technique is automatic and presents accurate solutions

with topology. Therefore, pruning and structure extraction steps are not required.

The techniques for computing transition points of A3 and A2
1 types provide all

solutions. In order to reduce computation time for A3
1 transition points, they were

required to be at least further apart than 0.5% of the size of the parametric domain in
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(a) (b)

(c) (d)

Figure 4.6. Examples of 2D medial axis computed directly from parametric B-spline
boundary curves ((a), (b)) and using a discrete Voronoi-based method [53]((c), (d)). In
(a) and (b), A3 end points are shown in cyan, A3

1 junction points in red and A2
1 critical

points in green. Arrows on the A2
1 curves indicate the shock graph structure.
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(a)

(b)

Figure 4.7. Examples of 2D medial axis using a discrete Voronoi-based method [53].
(a) Boundary sampled with 50 points. (b) Boundary sampled with 100 points. The
discrete medial axis converges to the accurate result as sampling density increases.
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the examples shown. Therefore, no two transition events could occur within a region

of this size. The topology of the computed medial axis is accurate up to this specified

accuracy. Between transition events, a much higher accuracy (10−3 of the size of the

model in R
2) was used to locate the medial axis points since the evolution of the

intersection curves is smooth.

4.5 Summary

This chapter presents a new technique to automatically compute accurate and

topologically correct (up to user specified numerical accuracy) interior medial axes of

planar regions bounded by single closed parametric B-spline curves. The technique is

based on tracking self-intersections of offsets of the boundary curves under the eikonal

flow. Transition points of the self-intersections are computed in advance and thus

accurate topology is guaranteed. Further, the method also indicates the direction of

increasing radius of maximal circles at each transition point, giving the shock graph

structure [50].

Our method is more general than the approach presented in [105] for computing

the medial axis of a planar region since convex corner vertices are not required. All

begin/end points of medial axis segments are computed in advance and therefore our

method avoids computationally expensive distance and curvature checks used during

tracing in that method.

The technique presented in this chapter is extended for the 3D case to compute

the medial axis of regions bounded by B-spline surfaces. First, Chapter 5 presents a

new technique for accurately computing ridges on B-spline surfaces. Edge curves of the

medial axis are computed as a subset of the computed ridges. Chapter 6 then presents

the technique for computing the 3D medial axis.



CHAPTER 5

RIDGES

This chapter presents a new tracing algorithm to compute all generic ridges on a sur-

face accurately in the form of connected curve segments. The algorithm traverses ridge

segments by detecting ridge points while advancing and sliding in principal directions

on a surface in a novel manner, thereby computing connected curves of ridge points.

This chapter presents a technique to compute ridges on tensor product parametric

B-spline surfaces. This technique is then generalized to extract ridges from isosurfaces

of volumetric data represented using trivariate implicit B-splines (See Section 7.3).

The input surface, S(u, v), is assumed to be regular (i.e., Su × Sv 6= 0), having

only isolated umbilics, and ridges that exhibit only generic properties as specified in

Section 1.5.1. The surface is also required to be C3 smooth, in order to have continuous

first order derivatives of principal curvatures. κ1-ridges and κ2-ridges are traced sepa-

rately. In our discussion, we present the algorithm for tracing ridges corresponding to

the maximum principal curvature (κ1). The tracing procedure for κ2-ridges is similar,

and the differences are indicated at the end of the section after an overview of the

algorithm has been presented.

5.1 Overview

Traces are started at three types of seed points including 1) critical points of cur-

vature, 2) umbilics, and 3) ridge points on the surface boundaries. Curvature critical

points trivially satisfy the ridge condition since the curvature gradient is identically

zero at these locations. Umbilics are also included as seed points since these are the

only points on a surface where generic ridges of the same type may meet. Recall from

Section 1.5.1 that ridges either form closed curves, or end at only umbilics or points on

the surface boundary. All ridges on a surface pass through at least one type of seed
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point. When a ridge forms a closed loop, it passes through a curvature extremum point

(See Proposition 5.1.1). Therefore, no ridge is missed when these seed points are used

for tracing.

Proposition 5.1.1 A closed generic ridge curve has at least one principal curvature

critical point on it.

Proof. Consider a closed κ1-ridge curve c. Then, as κ1 is continuous on c, it takes on

a maximum and minimum value. Let x0 be a point where the maximum occurs. If v

is a tangent vector of c at x0, then
dκ1

dv
|(x0) = 0. If x0 is not a turning point, then the

principal curve p1 for κ1 through x0 is transverse to c at x0. Let w be a tangent vector

for p1 at x0. By the definition of a κ1-ridge point, κ1 has a critical point along p1 at x0,

so dκ1

dw
|(x0) = 0. Hence, as w and v are independent, x0 is a critical point for κ1.

Further, x0 is not a turning point for the ridge. If it were, then both dκ1

dv
|(x0) = 0

(x0 is a local maximum for κ1 along c), and x0 a turning point implies d2κ1

dv2
|(x0) = 0.

However, generically when the first two derivatives are zero, d3κ1

dv3
|(x0) 6= 0. Thus, d2κ1

dv2

changes sign at x0, so it is an inflection point and hence not a local maximum. Hence,

generically a local maximum will not be a turning point.

The tracing strategy is based on the property that κ1-ridges intersect the κ1 curva-

ture lines transversally except at a few isolated turning points. The idea is to trace a

κ1 curvature line to a zero of the ridge function, where the κ1 curvature line intersects

a ridge. In order to progress to the next trace point, the algorithm steps along the κ2

curvature line (T2 direction) and then traces the κ1 curvature line from the new location.

Since the curvature lines are orthogonal, the algorithm is guaranteed to progress further

along a ridge.

Each trace consists of several progress operations. Each progress operation consists

of two steps viz., an advance step, and a slide step, as illustrated in Figure 5.1.

1. Advance step - compute a new point in the tangent plane of the current ridge

point in the Euclidean minimum principal direction (T2) and project it onto the

surface.
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R0

R1

p
2

p
1

p
0

S(u,v)

Advance

Project

Slide

Project

Ridge

(a) Advance and slide steps for a single progress operation

R0

R1

R2

R3

S(u,v)

Ridge

Advance

Slide

(b) Several progress operations in a trace (projection steps
not shown)

Figure 5.1. Tracing overview - advance and slide steps. Advance steps are shown in
brown, projection operations are shown in black, slide steps are shown in green. Also
shown are principal directions and ridges (dark blue).

2. Slide step - slide along the Euclidean maximum principal direction (T1) and

project onto the surface. Iterate until a zero of the ridge function is reached

(T1 recomputed at each point).

Figure 5.1(a) shows an advance step and a slide that consists of a single step. In

general, a slide may consist of several small substeps and the principal curvatures and

directions are recomputed at every substep (Figure 5.1(b)).
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Step sizes are varied adaptively (See Section 5.3). A trace ends when it reaches either

another seed point or a parametric domain boundary. A new trace is also computed

from the same seed point but by advancing in the opposite (−T2) direction. Special

care is needed when the trace is close to a turning point and when the trace is started

at an umbilic. The following sections present details on computing seed points and the

different tracing steps.

The algorithm for tracing κ2-ridges differs in that the advance step is done along the

maximum principal direction (T1) and the slide step is performed along the minimum

principal direction (T2).

5.2 Computing Seed Points

This section presents systems of equations required to compute curvature critical

points and umbilics based on [85, 97]. A robust and efficient subdivision-based con-

straint solving technique [43, 45] is used to compute the roots of relevant piecewise

rational equations.

5.2.1 Curvature Critical Points

Critical points of curvature occur at the locations on a surface where the curvature

gradient is identically zero. Using the notation introduced in Section 3.1.2.1, and writing

both principal curvatures in one equation,

κ(u, v) =
−B ±

√
B2 − 4AC

2A
(5.1)

It is necessary to solve for simultaneous roots of

κu(u, v) = 0,
κv(u, v) = 0.

(5.2)

B(u, v), and hence κu and κv, are not rational functions since they contain the coeffi-

cients of the second fundamental form, which in turn have a square root in the denomi-

nator. They are converted to rational functions as follows. Noting that ||Su×Sv|| =
√
A,



55

L =
L̂√
A
, M =

M̂√
A
, N =

N̂√
A

B =
B̂√
A
, C =

Ĉ

A

κ(u, v) =
−B̂ ±

√
B̂2 − 4AĈ

2A
3
2

(5.3)

where L̂, M̂ , N̂ , B̂, Ĉ are piecewise polynomial or piecewise rational depending on

whether S(u, v) is piecewise polynomial or rational, respectively.

The first order derivatives of κ(u, v) are given by,

κu = P (u) ± R(u)

√
Q

= 0

κv = P (v) ± R(v)

√
Q

= 0

(5.4)

where,

P (u) = 1
2
[(−A

−3
2 B̂u +

3
2
A

−5
2 AuB̂)]

P (v) = 1
2
[(−A

−3
2 B̂v +

3
2
A

−5
2 AvB̂)]

R(u) = 1
2
[(A

−3
2 B̂uB̂ − 2A

−1
2 Ĉu + 4A

−3
2 AuĈ − 3

2
A

−5
2 AuB̂

2)]

R(v) = 1
2
[(A

−3
2 B̂vB̂ − 2A

−1
2 Ĉv + 4A

−3
2 AvĈ − 3

2
A

−5
2 AvB̂

2)]

Q = B̂2 − 4AĈ

(5.5)

Note that,

κ1u = P (u) +
R(u)

√
Q
, κ1v = P (v) +

R(v)

√
Q

κ2u = P (u) − R(u)

√
Q
, κ2v = P (v) − R(v)

√
Q

(5.6)

Moving the terms with the square root in Equation 5.4 to the right hand side, squaring

both sides and simplifying we get,

QP (u)2 −R(u)2 = 0

QP (v)2 −R(v)2 = 0
(5.7)
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The above equations encode the critical points of both κ1 and κ2. After solving for the

roots of the above system of equations, they are classified as critical points of κ1 or κ2

by evaluating Equation 5.6.

5.2.2 Umbilics

At umbilics, κ1 = κ2. Therefore, from Equation 5.1 it is apparent that,

Q(u, v) = B̂2 − 4AĈ = 0

B̂ =
B√
A

Ĉ =
C√
A

(5.8)

In addition, Q(u, v) attains a minimum at the umbilic (since Q(u, v) ≥ 0). Therefore,

the roots of the following system of equations are computed.

∂Q(u, v)

∂u
= 2B̂B̂u − 4AuĈ − 4AĈu = 0

∂Q(u, v)

∂v
= 2B̂B̂v − 4AvĈ − 4AĈv = 0

(5.9)

Equation 5.8 is then evaluated to ensure Q(u, v) = 0 (since there may be local extrema

of Q(u, v) that do not occur at umbilics).

5.2.3 Boundary Ridge Points

Boundary seeds are computed as zeros of the following four univariate versions of

the ridge equation:

φi(τ
(u)
begin, v) = 0 (5.10a)

φi(τ
(u)
end − ǫ, v) = 0 (5.10b)

φi(u, τ
(v)
begin) = 0 (5.10c)

φi(u, τ
(v)
end − ǫ) = 0 (5.10d)

where φi is the ridge function for κi, and τ
(u)
begin, τ

(u)
end, τ

(v)
begin, τ

(v)
end are the parameter values

corresponding to the boundary knots of the domain of S(u, v). Since the upper end
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of each knot interval is open (Section 3.2), the isoparametric knot lines at τ
(u)
end and

τ
(v)
end are not considered part of the boundary and ridge seeds are computed at τ

(u)
end − ǫ

and τ
(v)
end − ǫ instead. Since φi(u, v) is not piecewise rational, the equation φi(u, v) = 0

is converted into φ̃i(u, v) = 0 by rearranging terms and squaring so that φ̃i(u, v) is

piecewise rational.

5.3 Tracing

As mentioned in Section 5.1, each trace consists of a series of advance and slide steps.

For both these steps, consistent orientation of the principal directions and prudent step

sizes must be chosen in order to successfully trace a ridge. We discuss each operation

with respect to tracing a κ1-ridge. The strategy for tracing at umbilics and the technique

used for projecting points onto the surface at every step are also presented.

5.3.1 Advance Step

5.3.1.1 Orientation

At every advance step, it is necessary to ensure that the new T2 vector is along the

same direction as the previous T2 vector and not opposite (by ensuring that the angle

between the vectors in acute). The heuristic, called the acute angle rule [22], has been

used for tracing ridges on polygonal meshes.

5.3.1.2 Step Size

A judicious choice of step size is critical when two ridges are close. At every advance

step, an initial step size δ0 is first selected1. Let ri ∈ R2 be the parameter values for

the current ridge point and rj ∈ R2 be the parameter values for the point arrived at by

advancing along the T2 direction and projecting onto the surface. Let φ(u, v) represent

the ridge condition for the current principal curvature. γ(w) = (u(w), v(w)) = ri +

w(rj − ri), w ∈ [0, 1] is the line segment joining ri and rj. φ(γ(w)) is the corresponding

curve segment of the ridge function between ri and rj. In order to guarantee robustness,

the trace must not slide to either a local extremum of φ(u, v) or an adjacent ridge

1In our experiments, initial step sizes of 0.1% of the length of the diagonal of the bounding box of
the surface worked well.
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segment (See Figure 5.2). This condition can be enforced by ensuring that φ(γ(w))

does not have any local extrema. The test would then involve checking whether or

not the graph of φ(γ(w)) has a zero slope at any point. However, computation of the

slope requires higher order surface smoothness. In addition, φ(γ(w)) is not a rational

function. Therefore a computationally efficient approach similar to a Monte Carlo

method requiring only samples of φ(γ(w)) is used. The interval w = [0, 1] is sampled

randomly and φ(γ(w)) is evaluated at the samples. The robustness test then checks if

the samples of φ(γ(w)) are monotonic with respect to w. δ0 must be reduced until this

condition is satisfied.

The advance step size is additionally varied adaptively during the trace depending

on nearness to a turning point. The step size can be additionally scaled using curvature

magnitude and curvature gradient magnitude at every step. Initially, at a seed point,

there is no information about the ridge direction. From the next advance step onward

the ridge direction is tracked using the previous trace points. The angle between the

ridge direction and the T1 direction computed at the current location is related to the

proximity of a turning point. An angle close to zero implies that a turning point is

(b) (c)

(w) (w) (w)

(a)

w wri ri ri rjrj rjw

Figure 5.2. Robust initial advance step size selection. ri is a ridge point and rj is
the advance point.The graph of φ(w) between ri and rj (w ∈ [0, 1]) is shown as a thick
curve. Broken curve segments indicate φ(w), w < 0, w > 1. δ0 should be chosen such
that φ(w) does not have any local extrema between ri and rj. a) indicates a correct
step size selection. b) and c) indicate incorrect step size selections. In case b), the trace
will get stuck in a local minimum of φ(w) and will not reach a ridge. In case c), the
trace will converge to an adjacent ridge segment.
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very close. The step size is reduced accordingly during the trace until it falls below a

threshold (turning point stepsize threshold2). Once it falls below the threshold,

the orientation of the T2 vector is reversed since the ridge will now progress in the

opposite direction. From the next advance step onward, the trace will use the new

orientation of the T2 vector. The ridge progress direction is used to avoid backtracking

along the previously computed trace after a flip. The adaptive step size variation in

the vicinity of a turning point is illustrated in Figure 5.3. Also, using a larger step

size immediately after detecting a potential turning point and searching for a ridge by

sliding from an advance step in both T2 and −T2 directions helps detect a geodesic

inflection point of the ridge.

5.3.2 Slide Step

After an advance step is done, the slide begins with an initial step size and a

local search is performed for a ridge in both T1 and −T1 directions. Initial step sizes

can be robustly selected using the technique presented for advance step size selection.

Figure 5.4 shows a sample sliding scenario. The values of the ridge function at the

2We have used a threshold value of 10−6 in our experiments.

S(u,v)

Ridge

T

Advance step

Turning point

1

Figure 5.3. Advance step size (turning point aware). Advance steps are shown in
brown, maximum curvature principal directions are shown in pale blue, ridge is shown
in dark blue.



60

(b)(a) (c) (d)

Figure 5.4. Sliding to a ridge. Advance step is shown in brown, slide steps are shown
in green. a) First slide step is moving toward ridge but has not yet reached ridge, b)
Second slide step has crossed ridge, c) Slide is recomputed with reduced step size, new
slide point has not yet reached ridge, d) Slide has reached ridge after a few steps of b)
and c).

current location and a step from the current location in the T1 direction are compared. If

the ridge functions at the two points have the same sign and have increasing magnitude,

a slide is not performed in that direction. If they have the same sign and are decreasing

in magnitude, the new location is accepted and the slide is repeated from the new

location. If the signs are different (implying that the slide crossed a ridge), the slide

step size is reduced3 and a new location is recomputed from the current point along the

T1 direction at the current point. This process is repeated iteratively until the ridge

condition falls below a specified threshold (ridge accuracy threshold)4. A local acute

angle heuristic is used to select consistent T1 vector orientations.

5.3.3 Tracing from Umbilics

The algorithm sweeps around umbilics using the principal curvature directions to

detect ridges. If a ridge is found, a seed point is created and a trace is started in the

direction away from the umbilic (See Figure 5.5 for illustration).

Recall from Section 3.1.2.4 that there are either one or three pairs of minimum and

maximum curvature directions oriented opposite each other. In all of these cases, a

scout point is created at a small distance from the umbilic along each of the minimum

3In our experiments, we found that halving the step size works well.

4ridge accuracy threshold value of 10−3 was used in our experiments.
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Lemon Star Monstar

Figure 5.5. Tracing around umbilics. Scout points are shown in green.

curvature directions and traces are started from each of them as presented in the

previous section. If the scout does not detect a ridge, it will stop automatically. If

the scout does detect a trace, it will continue as if it were tracing from any other

regular point. In addition, scout points are also created along the maximum principal

directions in order to completely sweep around the umbilic.

It should be noted that it is possible to trace the same ridge multiple times (from

start to end and reverse). At umbilics, a ridge can be traced multiple times from

different seed points. Duplicate ridges are detected by inspecting the start and end

points of the respective traces. In the latter case, the start points are the same umbilic

point. In addition, the curvature lines may have a large geodesic curvature very close

to an umbilic. The local acute angle rule may not guarantee consistent orientations in

such cases, as noted by [22]. Therefore, to avoid such situations, the scout points must

not be created too close to an umbilic. Tracing κ2 ridges from umbilics is identical,

since scout points are created in all principal directions.

5.3.4 Projecting Points onto Surface

At every step, when a motion is performed in either principal direction in the tangent

plane of the surface, it is necessary to project the point onto the surface. In order to

find the point on the surface S(u, v) (and the corresponding parameter values) closest

to a given point X ∈ R3, a global approach involves solving the following system of

equations.
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< Su(u, v), (S(u, v)−X) > = 0

< Sv(u, v), (S(u, v)−X) > = 0
(5.11)

The solution set of this system of equations gives all points on the surface where the

vector from the pointX to a point on the surface is in the direction of the surface normal

at that point. The actual closest point is determined by computing the distances from

X to all the solutions and selecting the nearest one.

The global approach is too slow since the tracing algorithm may involve a very large

number of projection operations. In this work, a two-dimensional Newton’s method is

used to find the closest point on the surface. This technique is very fast and has been

used for interactive applications that require computing closest points at a very large

rate (several hundred times a second) [70]. Since the step sizes used in the algorithm

are typically very small, this works well. In the event that the Newton’s method fails to

give accurate results, the algorithm reverts to the global method. In our experiments,

this situation did not occur very often. The two-dimensional Newton’s method involves

solving the following linear system of equations for variables u and v.




∂(<Su,Z>)
∂u

∂(<Su,Z>)
∂v

∂(<Sv ,Z>)
∂u

∂(<Sv ,Z>)
∂v



[
u− u0

v − v0

]
= −

[
< Su, Z >
< Sv, Z >

]

Z = S −X

(5.12)

The Jacobian matrix can be expanded as,

[
< Suu, Z > + < Su, Su > < Suv, Z > + < Su, Sv >
< Suv, Z > + < Su, Sv > < Svv, Z > + < Sv, Sv >

]

(5.13)

Symbolic representations of the partial derivatives of the surface are precomputed so

that they can be evaluated quickly for the projection operations. The parameter values

of the current advance or slide point are used as the initial point (u0, v0). This system is

solved iteratively until the error is small enough. The error is computed as the residual

from the evaluation of Equation 5.11.
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5.4 Results and Discussion

We first present results for a simple biquartic Bézier patch (See Figure 5.6). This

surface was selected to allow direct comparison with the results presented in [21] (See

Figures 8.4 and 8.5 therein), which are topologically correct at all locations including

umbilics. The results are best compared in parametric space. Figure 5.6 (b) and Figure

8.4 of [21] are indeed very similar.

We also present ridges traced on complex models from different application domains

including a human femur bone model and a terrain elevation map [61]. The surfaces

are represented by tensor product biquartic B-splines. The results are compared with a

brute force sampling of the ridge function in the parametric domain in Figures 5.7 and

5.8. Soft ridges, similar to the style presented in [69], are computed to present a better

visualization. However, there is no topology associated with the sampled ridges. The

images showing the sampled κ1-ridges are colored with regions varying from blue fading

into yellow. Images of the sampled κ2-ridges are colored with regions varying from red

fading into cyan. Darker blue colors in the former, and brighter red in the latter images

correspond to regions closer to κ1 and κ2 ridges, respectively. For these examples, C3 is

sufficient since crests are not identified. The fourth order derivatives are not continuous

only at the knots and since there are only a few knots for both examples, crests can be

identified accurately away from them.

(a) (b)

Figure 5.6. Ridges on a Bézier patch. κ1-ridges are in blue and κ2-ridges are in red.
(a) Euclidean space. (b) Parametric space. Black cross-hairs indicate umbilics.
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a) b) c)

d) e) f)

Figure 5.7. Results of ridge computation on a Femur bone model. a) B-spline
representation of bone, b) Sampled κ1 ridges (darker blue indicates ridge proximity),
c) Sampled κ2 ridges (brighter red indicates ridge proximity), d) Ridges overlaid on
surface (κ1 → blue, κ2 → red), e) Traced κ1 ridges (black) overlaid on b), f) Traced κ2

ridges (black) overlaid on c)

The sampling approach can falsely indicate the presence (false positives) or absence

(false negatives) of ridges. In Figure 5.9, the rectangular outline region shows an

example where the presence of a κ1-ridge is falsely indicated on the terrain elevation

model. The κ1 ridge samples indicate the presence of a ridge. However, a close

inspection of the κ2 ridge samples and the traced ridges indicate that there is a κ2-ridge

in that region, which is verified by the topology of the traced ridges in the surrounding

region. False positives (+ve) occur when the magnitude of the ridge function is small

enough to pass a threshold used for coloring the samples, but not zero. Figure 5.9 also

shows an example where the sampling approach fails to detect a κ2-ridge (elliptic outline

region) of the terrain elevation model, but is accurately captured using the tracing

approach. False negatives(-ve) occur when width of the ridges is narrower (which can

be arbitrarily narrow) than the sampling fineness. Figure 5.9.(b) shows that the tracing
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a) b) c)

d) e) f)

Figure 5.8. Results of ridge computation on a terrain elevation data set. a) B-spline
approximation of the elevation data, b) Sampled κ1 ridges (darker blue indicates ridge
proximity), c) Sampled κ2 ridges (brighter red indicates ridge proximity), d) Ridges
overlaid on surface (κ1 → blue, κ2 → red), e) Traced κ1 ridges (black) overlaid on b),
f) Traced κ2 ridges (black) overlaid on c)

approach presented here avoids the problems associated with sampling-based techniques

and accurately captures ridge behavior.

To total number of seed points for the different models are presented in Table 5.1.

Computational aspects for the different models on a single CPU are compared in

Table 5.2. The computation times vary depending on the complexity of the models, not

only in terms of representation size, but also in terms of the features on the surfaces,

on the accuracy of the ridge tracing and the average trace length. We used a ridge

accuracy of 10−3 for all data sets. The femur and the terrain models are quite complex,

and our technique gives results in a few minutes. In comparison, an ODE based tracing
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(a) k1 ridge samples (b) Traced k1 and k2 ridges (c) k2 ridge samples

−ve

+ve +ve
k1 false k1 false

k2 false

Figure 5.9. An example of a false positive in κ1-ridge samples (rectangle outline) and
a false negative (ellipse outline) in κ2-ridge samples of the terrain elevation model. (a),
(b) and (c) represent enlarged views of κ1-ridge samples, traced ridges and κ2-ridge
samples of the same region of the terrain elevation model.

Table 5.1. Seed Points
Model Control Mesh # Curvature # Umbilics

Size Critical Points
Bézier patch 5 × 5 23 8

Femur 22 × 21 458 12
Terrain 20 × 20 508 314

Table 5.2. Computation Characteristics (on an Intel 2.4GHz Processor with 8GB
Memory)

Model Seed Points Ridge Tracing
Time (minutes) Time (minutes)

Bézier patch 0.08 0.07
Femur 7.03 3.68
Terrain 7.5 14.96

method took several hours to compute ridges with the same accuracy.

While our algorithm is not designed for nongeneric situations, end points of non-

generic ridges that stop within the surface boundary are detected in our algorithm when

the trace cannot detect any ridge during the slide step. Nongeneric ridges of the same

type may cross each other. The technique presented here does not capture the topology

at the junctions of ridges of the same type. This is an area for future work. Some

nongeneric ridge segments may be missed if the algorithm does not find seed points
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in those segments. Determining seed points that are neither curvature critical points

nor umbilics to account for nongeneric ridges is also an area for future work. However,

since the curvature critical points and umbilics represent important feature points on

a surface, our algorithm presented is guaranteed to capture salient ridges on a surface.

The constraint solver for computing seed points may give extraneous roots if too large a

tolerance is allowed. These false roots will result in traces that end within a few steps,

which is a nongeneric situation. Such ridge traces are detected and removed.

Most of the previous applications use crests mainly because there are few methods

for robust extraction of all types of ridges. Noncrest ridges are more sensitive to subtle

variations in geometry than crests and along with their topology, indicate higher order

local geometric variation. These local curvature variations may not be desirable for

smooth product designs. Therefore noncrest ridges are useful for evaluating product

designs where undesirable curvature variations of a freeform surface are detected [69].

Since these are higher order surface properties, they may not be immediately perceptible

even on high quality renderings of the objects. Noncrest ridges are useful for statistical

shape analysis tasks over a group of similar objects such as anatomical organs. Since

crests are more stable, they may occur at very similar locations and may seem to

have similar structure across the group of objects. In this case, the sensitivity of

noncrest ridges to local geometric variation will reveal additional geometric differences.

In addition, computing the full set of ridges helps in understanding the relationship

between crests and the topological structure of ridges. Noncrest ridges may connect

two seemingly separate crest segments. This information is useful for shape analysis

tasks. Umbilics represent important surface features and have been used for shape

fingerprinting [75]. Since noncrest ridges exhibit topological changes at umbilics, it is

also essential to compute ridges around umbilics accurately.

5.5 Summary

Ridges are important feature curves and have a wide variety of applications. Umbil-

ics and therefore, ridges around umbilics, also represent important aspects of the shape

of a surface. Ridges exhibit complex behavior around umbilics. This chapter presents
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a new numerical tracing technique for accurately computing ridges on B-spline surfaces

that has been designed using generic properties of ridges.

The tracing algorithm involves traversing curvature lines in a novel manner and

accurately captures the behavior of ridges at all points on a surface including umbilics.

The technique takes into account turning points without directly computing them,

thereby allowing ridge computation on C3 models, instead of requiring C4 smoothness.

Our technique has been designed for rational tensor product B-spline surface representa-

tions. Since ridge computation is local to a tensor product patch, it is directly extensible

for models with multiple patches. Some special cases, such as ridges parallel to a domain

boundary, may need to be addressed. Trimmed freeform surfaces also may be addressed

by minor modifications to the algorithm. The algorithm design enables optimization

using parallel processing techniques, which would further improve computation time.

The approach can be further extended to surfaces with isolated irregular points. The

technique presented in this dissertation avoids errors in ridge computation associated

with sampling-based approaches, while at the same time, it can generate results for

complex models that were previously computationally intractable.

The result is a set of polyline segments that are available for other applications,

such as surface segmentation, matching, quality control and visualization. We utilize

computed ridges to identify edge curves of the 3D medial axis. Chapter 6 presents the

technique for computing the 3D medial axis.



CHAPTER 6

3D MEDIAL AXIS

This chapter presents a new approach for computing the complete topologically

correct interior medial axis of three-dimensional regions directly from parametric B-

spline representations of their boundary surfaces. Recall from Section 1.2.2 that the

medial axis consists of surfaces bounded by edge curves, and branch curves where

surfaces meet. The medial axis also contains fin points where edge curves meet branch

curves, and six junction points where six surfaces (and four branch curves) meet at a

point. Precise mathematical definitions of each entity type are presented in that Section.

Our approach computes all entities of the medial axis with arbitrary user specified

accuracy along with correct topology. Parameter values of boundary surface points

corresponding to every medial axis point and the respective distance is also computed,

which gives the medial axis transform. The chapter is organized as follows. An overview

of the proposed algorithm is presented in Section 6.1 with details in Sections 6.2, 6.3

and 6.4. Results are presented in Section 6.5 and a summary of the chapter is presented

in Section 6.7.

6.1 Overview

We first present the approach when the region is bounded by a single closed surface.

Section 6.6 presents extensions of the approach to address regions specified by more

than one surface stitched together.

Let B be the boundary of a region in R
3 represented by a closed tensor product

parametric B-spline surface S(u, v) ∈ C(4). The surface normal, n(u, v) = Su×Sv

‖Su×Sv‖

(assumed oriented inward for a closed surface, with ‖ Su × Sv ‖6= 0) where subscripts

indicate the partial derivatives with respect to the corresponding parameter variable.

The offset surface resulting from the eikonal flow at a time t is given by σ(u, v, t) =
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S(u, v)+ t n(u, v), t ≥ 0. The variable t is exactly the offset distance and is also referred

to as time to emphasize the dynamic aspect of the algorithm.

Recall from Chapter 4 for the 2D case that as the boundary curve evolves under

the eikonal flow, different regions start intersecting at points, and that the trace of

the intersection points is the medial axis. By extension to the 3D situation, as the

boundary surface evolves under the eikonal flow in the increasing t direction, different

regions start intersecting with each other creating (self-) intersection curves that grow

and interact with each other until they collapse to single points and die. The approach

presented in this dissertation exactly models this behavior to compute the medial axis.

The medial axis consists of only the first intersection points of evolving offsets of any

two given points on the surface.

During the course of the eikonal flow, special changes to the structure of intersection

curves occur at certain transition points (including A1A3 and A4
1 points), where intersec-

tion curves are created, interact with each other to undergo intermediate transitions or

get annihilated. Away from transition points, the intersection curves evolve smoothly to

sweep out A2
1 surfaces of the medial axis. An intersection curve consists of a connected

set of A2
1 points, and A3, A

3
1, A1A3 or A4

1 points at curve ends where necessary, all

sharing the same offset distance.

Algorithm 4 summarizes the steps involved in computing the medial axis. The

proposed approach first computes transition points as well as A3 and A3
1 curves using

properties of the B-spline representation. A2
1 surfaces are then computed by evolving

intersection curves over time using theoretically derived evolution vector fields. Con-

nectivity between intersection curves at consecutive time instants is maintained as they

evolve. The topology of intersection curves are appropriately modified during transition

events. This computational approach is equivalent to following the level sets of the

distance field of S(u, v). Since the set of all local normal forms of the distance field

given in [89] are considered, our approach presents the complete topological structure

of the medial axis.
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Algorithm 4 Computing medial axis

1. Compute transition points.

2. Compute A3 curves and A1A3 points.

3. Compute A3
1 curves.

4. Classify transition points as creation, intermediate or annihilation.

5. Compute medial axis surfaces.

6.2 Transition Points and Transition Events

This section presents techniques to compute all types of transition points of inter-

section curves for the 3D medial axis. A summary of all types of transition events is

also presented. In addition to A1A3 and A4
1 points, the transition points include those

points on A3 curves, A3
1 curves and A2

1 surfaces where the distance to the boundary

attains a critical value. Transitions on A3 and A3
1 curves depend on the direction of

increasing distance to boundary along the curves, which we term as the curve’s flow

direction.

Let Si(ui, vi), i = 1, 2, 3, 4, denote representations of different regions of the bound-

ary surface, and let Ni =
∂Si

∂ui
× ∂Si

∂vi
denote the unnormalized normals of Si respectively.

By treating the single boundary surface as if it were different regions, we present

geometric equations for computing transition points. Roots of nonlinear geometric equa-

tions are computed using adaptations of robust subdivision based techniques [45, 43].

Extensions of these methods to improve efficiency of computing A3
1 critical points and

A4
1 points are presented.

6.2.1 A3 Critical Points

Although every point on S(u, v) has two principal curvatures κ1 ≥ κ2, for the

purposes of medial axis computation, it is necessary to consider only the larger principal

curvature κ1 [9]. The transition points of the medial axis related to κ1 correspond to

points on S(u, v) where κ1 attains a critical value. These points are computed by solving

for simultaneous roots of Equation 6.1.
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κ1u(u, v) = 0 κ1v(u, v) = 0 (6.1)

Given Equation 6.1 is solved for a particular pair (u, v), for those values, the sphere

centered at the offset point S(u, v) +
1

κ1(u, v)
n(u, v) having radius

1

κ1(u, v)
must be

maximal, by definition of the medial axis. The procedure for the maximal condition

check is presented in Section 6.2.6. The transition points of A3 type are the centers of

such maximal spheres. An A3 critical point is either a creation point or an intermediate

transition point, depending on whether the two A3 curve segments on either side of the

critical point flow outward or inward.

6.2.2 A2
1 Critical Points

The A2
1 transition points correspond to A2

1 points for which the distance to the

boundary attains a critical value. An A2
1 critical point at which the distance function

has a local minimum corresponds to a creation event. When the distance function has a

local saddle, the critical point corresponds to an intermediate transition event. Finally,

the critical point corresponds to an annihilation event when the distance function attains

a local maximum. This characterization follows the behavior of the transition points

for the intersection of two surfaces under generalized offset flows [27].

D(u1, v1, u2, v2) =‖ S1 − S2 ‖2= 〈S1 − S2, S1 − S2〉 (6.2)

Taking the partial derivatives of D with respect to u1, v1, u2, v2 and solving Equation 6.3,

we obtain critical points of D.

〈S1 − S2,
∂Si

∂ui

〉 = 0, 〈S1 − S2,
∂Si

∂vi
〉 = 0, i = 1, 2 (6.3)

Since some solutions of Equation 6.3 may not correspond to maximal spheres, the max-

imality condition must be checked at all solutions of Equation 6.3 using the procedure

in Section 6.2.6. Trivial solutions at which (u1, v1) = (u2, v2) are ignored. Equation 6.3

implies that the surface normals at S1(u1, v1) and S2(u2, v2) must point exactly in

opposite directions as illustrated in Figure 6.1(a).
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(a) (b)

Figure 6.1. Critical point of type (a) A2
1, (b) A

3
1, shown in blue. Different regions of

the surface S are shown in gray and arrows point in the corresponding surface normal
directions.

6.2.3 A1A3 Points

Figure 1.4 (d) shows an illustration of an A1A3 point. A1A3 points are computed

as part of the algorithm for computing A3 curves. See Section 6.3.1. A1A3 points

correspond to intermediate transition events based on whether the A3 curve and the A3
1

curve flow inward or outward at the A1A3 point.

Techniques for computing the flow directions (called the shock structure) presented

in [51] are summarized here. Let p and q ∈ R
3 be the A3 and A1 type contact points,

respectively, on S of the maximal sphere at the A1A3 point.Let Ti,p ∈ R
3, be the

unit length principal directions corresponding to κi,p, i = 1, 2, at p, and let np be

the unit length surface normal at p. Consider a local coordinate system at p with

{T1,p, T2,p, np} as axes (Monge form). Let (xq, yq, zq) be the coordinates of q in this

coordinate system. Let cridge = κ1,p〈∇κ1,p, t2,p〉((κ1,p − κ2,p)yq − zq〈∇κ1,p, t2,p〉). The

A3 curve flows outward at the A1A3 point if cridge > 0 and vice versa [51]. Let cjunc =

κ1,pyq((κ1,p − κ2,p)yq − zq〈∇κ1,p, t2,p〉). The A3
1 curve flows outward at the A1A3 point

if cjunc > 0 and vice versa [51].
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6.2.4 A3
1 Critical Points

The A3
1 critical points correspond to A3

1 points at which the distance to the boundary

attains a critical value. At such points, the normals at the three surface points are copla-

nar as illustrated in Figure 6.1(b) [81]. A3
1 critical points can be creation, annihilation

or intermediate transition types based on the flow direction of the A3
1 curve segments at

the critical point. For a point P ∈ R
3 to be an A3

1 critical point, the following equations

must be satisfied.

〈P − Si,
∂Si

∂ui

〉 = 0, 〈P − Si,
∂Si

∂vi
〉 = 0, i = 1, 2, 3 (6.4a)

‖ P − S1 ‖ = ‖ P − Sj ‖, j = 2, 3 (6.4b)

〈N1 ×N2, N3〉 = 0 (6.4c)

Since P = (x, y, z) is unknown, Equations 6.4(a)-(c) form a system of nine nonlinear

equations in nine unknowns. This system is reduced by adapting the simplification

techniques presented for surface-surface bisectors in [45]. Suppose P = S1 + αN1, and

substitute for P in Equation 6.4(b) with j = 2 to obtain

α =
−〈S1 − S2, S1 − S2〉

2〈S1 − S2, N1〉
(6.5)

Substituting for P and α in Equations 6.4(a)-(b) with i = 2, 3, j = 3, and simplifying

yields a system of six equations in six variables. Denote S1 − Si by S1Mi, i = 2, 3.

2〈S1M2, N1〉〈S1Mi,
∂Si

∂ui

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂ui

〉 = 0, i = 2, 3 (6.6a)

2〈S1M2, N1〉〈S1Mi,
∂Si

∂vi
〉− ‖ S1M2 ‖2 〈N1,

∂Si

∂vi
〉 = 0, i = 2, 3 (6.6b)

〈S1M2, N1〉 ‖ S1M3 ‖2 − ‖ S1M2 ‖2 〈N1, S1M3〉 = 0 (6.6c)

〈N1 ×N2, N3〉 = 0 (6.6d)

Note that Equations 6.4(a) for i = 1 are automatically satisfied. It is possible to

solve the system of equations in 6.6(a)-(d) by symbolically representing the left hand
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sides of the equations and using subdivision based methods directly on the 6-variate

functions [45], but the large memory requirements rendered it infeasible on an 8GB

RAMmachine. The expression tree based method presented in [43] significantly reduced

the memory requirements but was still computationally infeasible due to the large

number of dimensions.

To make this approach practical, we have improved the computation time for this

problem using hierarchical and parallel computation strategies. Equations 6.6(a)-(b) for

i = 2 are dependent only upon u1, v1, u2, v2. Therefore, the problem size is reduced by

first finding subdomains that satisfy these two equations, and then finding subdomains

that also satisfy Equations 6.6(a)-(d) for i = 3. Intuitively, Equations 6.6(a)-(b) i = 2

require two points on the surface that are equidistant from an offset point P in R
3.

The remaining equations find a subset of those points for which there is a third surface

point that is also equidistant to P .

The expression tree based approach is used to subdivide u1, v1, u2, v2 parametric

domains until a user specified threshold is reached while using interval arithmetic to

reject subdomains that do not satisfy Equations 6.6(a)-(b) with i = 2. Also, subdomains

that do not correspond to regions that satisfy the maximal condition are pruned. The

maximal condition is checked by computing ranges of ρ = α ‖ N ‖ with interval

arithmetic and testing whether 1) the range contains a part of the positive real line,

and 2) is bounded by the size of the region enclosed within S. Negative values of ρ

correspond to points outside the region since the offset would be in the outward normal

direction and thus cannot contribute to the solution. Each of the remaining subdomains

along with variables u3, v3 is then tested with Equations 6.6(a)-(d) using subdivision

along u3, v3 parametric directions, interval arithmetic and pruning. Moreover, this

step is performed in parallel since the subdomains are independent. Trivial solutions

are ignored. The centers of remaining subdomains of ui, vi, i = 1, 2, 3 are used in

a Newton-Raphson refinement step [45] to obtain accurate solutions and nonmaximal

solutions are ignored. This step is also performed using parallel processing techniques.
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6.2.5 A4
1 Points

A4
1 points are equidistant to four different points on S and the corresponding sphere

is maximal. Figure 1.4 (e) shows an illustration of an A4
1 point. A4

1 points can be

annihilation or intermediate transition based on the direction of the flow of the four

incident A3
1 curves as presented in [51]. For a point P ∈ R

3 to be an A4
1 point, the

following equations must be satisfied.

〈P − Si,
∂Si

∂ui

〉 = 0, 〈P − Si,
∂Si

∂vi
〉 = 0, i = 1,2,3,4 (6.7a)

‖ P − S1 ‖ = ‖ P − Sj ‖ , j = 2,3,4 (6.7b)

Just as in the case for A3
1 critical points, the system in Equation 6.7 of eleven

equations is reduced using Equation 6.5 to a system in eight equations in eight variables

ui, vi, i = 1, 2, 3, 4 shown in Equation 6.8(a)-(c).

2〈S1M2, N1〉〈S1Mi,
∂Si

∂ui

〉− ‖ S1M2 ‖2 〈N1,
∂Si

∂ui

〉 = 0, i = 2, 3, 4 (6.8a)

2〈S1M2, N1〉〈S1Mi,
∂Si

∂vi
〉− ‖ S1M2 ‖2 〈N1,

∂Si

∂vi
〉 = 0, i = 2, 3, 4 (6.8b)

‖ S1Mj ‖2 〈S1M2, N1〉− ‖ S1M2 ‖2 〈N1, S1Mj〉 = 0, j = 3, 4 (6.8c)

Intuitively, Equations 6.8(a)-(b) with i = 2 require two points on the surface that

are equidistant from an offset point P in R
3. Equations 6.8(a)-(c) with i = 3, j = 3 find

a third surface point that is also equidistant to P with the other two points. And finally,

Equations 6.8(a)-(c) with i = 4, j = 4 find a fourth surface point that is equidistant to

P with the other three points.

Equations 6.8(a)-(b) with i = 2 are dependent only upon u1, v1, u2, v2; Equations 6.8(a)-

(c) with i = 3, j = 3 are dependent on u1, v1, u2, v2, u3, v3, and Equations 6.8(a)-(c)

with i = 4, j = 4 are dependent on u1, v1, u2, v2, u4, v4. So this structure lends itself

to a hierarchical technique similar to the A3
1 critical point case. Equations 6.8(a)-(c)

will provide exactly the same solutions for both i = 3, j = 3 and i = 4, j = 4, so this

step is performed once and subdomains in the u3, v3 parametric directions are used for

u4, v4 parametric directions, thereby effectively reducing the number of dimensions in
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the subdivision search stage from eight to six. Moreover, Equations 6.8(a)-(c) with

i = 2, 3, j = 3 are identical to Equations 6.6(a)-(c). So the subdivision stage for A3
1

critical point and A4
1 point computations are combined. The refinement stages for

Equations 6.8(a)-(c) are performed in parallel.

In order to determine the flow directions of the the four A3
1 curves at an A4

1 point,

we use the following rule as presented in [51]. Let S1, S2, S3, S4 denote the four contact

points on the surface for the A4
1 point. Let πi be the plane through three of the four

contact points Sj, Sk, Sl, j, k, l ∈ {1, 2, 3, 4}, j 6= k 6= l, j 6= i, k 6= i l 6= i. If Si and the

A4
1 point are on the same side of πi, then the corresponding A3

1 curve flows into the A4
1

point. Otherwise, the A3
1 curve flows outward from the A4

1 point.

6.2.6 Maximal Condition Check

In several steps of the algorithms presented here, it is necessary to check whether

a given point P corresponds to the center of a sphere with radius d that is maximally

inscribed within the region bounded by B. In this work, this condition is checked by

first computing the closest point on S(u, v) to P . Closest points are computed by first

computing points on the surface where the distance to P , given by ‖ S(u, v) − P ‖,
attains a critical value. Such points are obtained by finding simultaneous roots of

Equation 6.9 using robust B-spline equation solvers [45, 43].

〈S − P, Su〉 = 0, 〈S − P, Sv〉 = 0 (6.9)

All roots are then inspected to select the one with the smallest distance. For P to

correspond to a maximally inscribed sphere, the smallest distance must equal d.

6.2.7 Catalog of Transition Events

At transition points, corresponding evolution curves are either created, annihilated

or undergo intermediate transitions. We present a complete list of all generic transitions

for the medial axis. This list presents consequences of the transitions on participating

A2
1 surfaces and has been compiled using theoretical results presented in [89], which

considers local singularities of the distance field, as well as the shock structure of A3

and A3
1 curves presented in [51].
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1. Creation Events:

i) At an A3 critical point where κ1 has a local maximum. An intersection curve

segment is created with the two end points on an A3 curve (Figure 6.2 (a)).

ii) At an A2
1 critical point where the distance to S has a local minimum. An

intersection curve loop of the evolving offset surfaces is created (Figure 6.2

(b)).

2. Annihilation Events:

i) At an A2
1 critical point where the distance to S has a local maximum. An

intersection curve loop ends (Figure 6.3 (a)).

ii) At an A3
1 critical point where two A3

1 curves flow inward, and the correspond-

ing intersection curves disappear (Figure 6.3 (b)). The circumcenter of the

triangle formed by the three contact points of the A3
1 point lies inside the

triangle.

iii) At an A4
1 point where four A3

1 curves flow inward, and the corresponding

intersection curves end (Figure 6.3 (c)).

3. Intermediate Transition Events:

i) At an A3 critical point where κ1 has a local saddle point, at which two

intersection curves join (Figure 6.4).

A curve3

(a) (b)

Figure 6.2. Creation events at (a) A3 type critical point, (b) A2
1 type critical point.

Transition points are shown in brown and the evolving A2
1 surfaces are shown in blue.
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curve A1
3

curveA1
3

3
curve

A1
3

curve

A1
3

curve

A1
3

curve

A1

(a) (b) (c)

Figure 6.3. Annihilation events at (a) A2
1 type critical point, (b) A3

1 type transition
point and (c) A4

1 type transition point. Transition points are shown in brown and the
evolving A2

1 surfaces are shown in various colors.

curve3A

Figure 6.4. Intermediate transition event at an A3 type critical point. Transition
points are shown in brown and the evolving A2

1 surfaces are shown in blue.

ii) At an A2
1 critical point where the distance to S has a local saddle so two

intersection curves meet and exchange branches (Figure 6.5).

iii) At an A1A3 point where the intersection curve from a smooth sheet passes

and creates an A3
1 point which evolves along an A3

1 curve away from the A1A3

point (Figures 6.6, 6.7). Figure 6.6 corresponds to the case when the flow

direction of the A3 curve is into the A1A3 point and the flow direction of the

A3
1 curve is directed away from the A1A3 point. Figure 6.7 corresponds to

the case when the flow directions of the A3 and A3
1 curves are directed away

from the A1A3 point.
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(a) (b)

Figure 6.5. Intermediate transition events at an A2
1 type critical point. The evolving

intersection curves meet and exchange branches. This can result in a merge event
(shown in (a)) or a split event (shown in (b)). Transition points are shown in brown
and the evolving A2

1 surfaces are shown in blue.

A curve3
A curve3

AA
3

curve
11

3
curve

Figure 6.6. Intermediate transition event at an A1A3 type critical point. (a) One
evolving intersection curve splits at the A1A3 point to create two segments belonging
to the same A2

1 surface. One of the ends of another intersection switches from an A3

curve onto an outward flowing A3
1 curve. Transition points are shown in brown and the

evolving A2
1 surfaces are shown in various colors.

iv) At an A1A3 point where an A3
1 curve flows into it and the intersection curves

meeting at the transition point transform into a smooth curve on a smooth

medial sheet (Figure 6.8). This transition corresponds to the situation when

the flow directions of the A3 and A3
1 curves are directed into the A1A3 point.

v) At an A3
1 critical point where three intersection curves on different A2

1 surfaces

meet and split into two triples of intersection curve segments which meet at

the end points on A3
1 curves flowing outward (Figure 6.9). The circumcenter
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1
3

curve A1
3

curve

A curve3
A3 curve

A

Figure 6.7. Intermediate transition event at an A1A3 type critical point. One evolving
intersection curve splits at the A1A3 point to create two segments belonging to the same
A2

1 surface. A new A2
1 surface is created with one end of the intersection curve on an

outward flowing A3 curve and the other end on an outward flowing A3
1 curve. Transition

points are shown in brown and the evolving A2
1 surfaces are shown in various colors.

1
3

curve

A curve3

A

Figure 6.8. Intermediate transition event at an A1A3 type critical point. An evolving
intersection curve with one end on an inward flowing A3 curve and the other end on
an inward flowing A3

1 curve ends at the A1A3 point. Two other evolving intersection
curve segments merge and the A2

1 surface evolves smoothly beyond the A1A3 point.
Transition points are shown in brown and the evolving A2

1 surfaces are shown in various
colors.

curve A1
3

curve A1
3

curveA1
3

curve A1
3

Figure 6.9. Intermediate transition event at an A3
1 type critical point. Three evolving

intersection curves meet, split and create two triples of intersection curves. Transition
points are shown in brown and the evolving A2

1 surfaces are shown in various colors.
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of the triangle formed by the three contact points of the A3
1 point lies inside

the triangle.

vi) At an A3
1 critical point where two intersection curves on different A2

1 surfaces

meet and split into two pairs of intersection curve segments meeting at the

end points on A3
1 curves flowing outward. Also, a new intersection curve

on a third A2
1 surface is created with the same end points on the A3

1 curve

(Figure 6.10). The circumcenter of the triangle formed by the three contact

points of the A3
1 point lies outside the triangle.

vii) Two intersection curves on distinct A2
1 surfaces meet at two regular A3

1 points,

where two intersection curves on a third A2
1 surface also end. The two A3

1

curves flow into the critical point, the first two intersection curves on different

A2
1 surfaces collapse to the critical point, and the other two intersection curves

on the third A2
1 surface merge into a single intersection curve (Figure 6.11).

The circumcenter of the triangle formed by the three contact points of the

A3
1 point lies outside the triangle.

viii) Three A3
1 curves meet at an A4

1 point with a transition to one A3
1 curve flowing

outward from the A4
1 point. Intersection curves are modified accordingly

(Figure 6.12).

ix) Two A3
1 curves meet at an A4

1 point with a transition to the other two A3
1

curves. Intersection curves are modified accordingly (Figure 6.13).

3
curve A1

3
curve A1

3
curveA1

3
curve A1

Figure 6.10. Intermediate transition event at an A3
1 type critical point. Two evolving

intersection curves meet and split. A third intersection curve on a new A2
1 surface is

created. Transition points are shown in brown and the evolving A2
1 surfaces are shown

in various colors.
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A1
3

curve A1
3

curveA1
3

curve A1
3

curve

Figure 6.11. Intermediate transition event at an A3
1 type critical point. Two evolving

intersection curves annihilate. Another set of two intersection curves merge. Transition
points are shown in brown and the evolving A2

1 surfaces are shown in various colors.

1
3

curve

A1
3

curve

A1
3

curve

A1
3

curve A

Figure 6.12. Intermediate transition event at an A4
1 type transition point. Three

evolving intersection curves annihilate. Each of three other intersection curves switch
an end point from an inward flowing A3

1 curve onto the outward flowing A3
1 curve.

Transition points are shown in brown and the A2
1 surfaces are shown in various colors.

Proposition 6.2.1 The list of transition events in Section 6.2.7 is complete for the

generic case.

Proof. Consider the function D(y) = min{‖ x − y ‖: x ∈ S(u, v)}. D(y) is the

distance field giving the closest distance of any point y ∈ R
3 to the surface S. The 3D

medial axis corresponds to the singular set of D(y). The set of all local normal forms

of D(y) for the generic case has been characterized in [89]. Computing the evolution of

the self-intersection set of offsets of S is equivalent to following the level sets of D(y).

Therefore, the transition events of the intersection curves are given by the local normal

forms of D(y). Since the complete set of all local normal forms of D(y) for the generic

case is considered in our approach, the list of transition events is complete.
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1
3

curve

A1
3

curve

A1
3

curve

A1
3

curve

A

Figure 6.13. Intermediate transition event at an A4
1 type transition point. One

evolving intersection curve ends. Each of four other intersection curves switch an end
point from an inward flowing A3

1 curve onto the outward flowing A3
1 curve. One new

intersection curve with end points on the two outward flowing A3
1 curves is created.

Transition points are shown in brown and the A2
1 surfaces are shown in various colors.

6.3 Curve Elements

6.3.1 A3 Curves

Ridges are loci of points on a surface at which one of the principal curvatures attains

a critical value along its principal direction [59]. A ridge point of κ1 satisfies 〈∇κ1, t1〉 =

0, where principal direction t1 is a 2D column vector whose two coordinates denote

coefficients of Su and Sv, respectively, at S(u, v). A κ1 ridge point is called elliptic if

κ1 attains a local maximum along t1 [59].

A3 curves on the medial axis correspond to loci of elliptic ridge points of κ1 on the

surface such that the sphere centered at the center of curvature corresponding to κ1

is maximally inscribed within the region of interest. Ridges on S(u, v) are computed

using techniques presented in Chapter 5 that guarantee robust and accurate extraction

of all ridges on B-spline surfaces. Ridge curves are output as polylines. Elliptic ridges

of κ1 are identified by testing the extremum type condition at each ridge point vertex of

the polylines. Only those points that pass the maximal condition are retained resulting

in segments or closed curve loops (See Section 6.2.6). The end points of each nonloop

segment occur where the maximal condition first fails and corresponds to an A1A3

point. A3 curves on the medial axis are then computed as offsets of elliptic ridges at

distances 1
κ1

(radius of curvature) along the inward normal of the surface at each point.

In Equation 6.10, R is a collection of m ridge curves Rj that correspond to A3 curves.
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Each Rj is a connected set of elliptic ridge points on S.

R = {⋃m

j=1 Rj}, Rj = {(u, v) : 〈∇κ1(u, v), t1(u, v)〉 = 0,

tT1

[
κ1uu κ1uv

κ1uv κ1vv

]
t1 < 0, bmax(u, v) = (C(u, v), 1

κ1(u,v)
)}

C(u, v) = S(u, v) + 1
κ1(u,v)

n(u, v)

(6.10)

where bmax(u, v) denotes a maximally inscribed sphere with center C(u, v) and radius

1
κ1(u,v)

. The A3 curves on the medial axis are the loci of the sphere centers C(u, v) for

all Rj.

6.3.1.1 Identifying A1A3 Points on A3 Curves

By definition, A1A3 points are locations where the maximal sphere is tangent to the

corresponding ridge point on the surface as well as to another point in a different region

of the surface. For each end point of a nonloop segment where the maximal condition

fails, the other surface point corresponding to the A1 condition is determined by finding

closest points on the surface with distance equal to the radius of curvature ( 1
κ1
) at the

ridge point using Equation 6.9 in Section 6.2.6.

6.3.2 A3
1 Curves

This section presents a tracing algorithm for computing A3
1 curves. A

3
1 critical points,

A1A3 points and A4
1 points, the computation of which is presented in Section 6.2, are

source and sink points for the proposed algorithm. The regular points of A3
1 curves

correspond to points where three different regions of the of the deforming boundary

intersect transversely (i.e., the three tangent planes of the offset surface at the inter-

section point are different). Using this characterization, we construct evolution vector

fields based on methods and ideas from [32] to follow the time trace of A3
1 points. When

these vector fields are integrated beginning at an A3
1 point, we obtain the A3

1 curve from

that point.

6.3.2.1 Evolution Vector Field for A3
1 Curves

Consider a triple intersection point P ∈ R
3 at which the three offset surfaces intersect

transversely. Denote the three different surface regions as Si, with unit surface normal

vectors ni, and the corresponding offset surfaces as σi(ui, vi, t), i = 1, 2, 3 respectively.
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Let φi = σiui
× σivi

(Note φi ‖ ni). Since the tangent planes at P are all different, ni,

i = 1, 2, 3 span R
3. Zij = φi × φj, i = 1, 2, 3, j = (i+ 1) mod 3, are tangent vectors to

the intersection curves of the pair of offset surfaces σi and σj. A linear algebra argument

shows that {Z12, Z23, Z13} also forms a basis for R3 at P . Also, because both Zij and

Zjk are orthogonal to nj , i = 1, 2, 3, j = (i + 1) mod 3, k = (i + 2) mod 3, they span

the tangent plane of σj at P . (See Figure 6.14). At each point in the neighborhood of

P , we write
n1 − n2 = a1Z12 + b1Z13 + c1Z23

n3 − n2 = a2Z12 + b2Z13 + c2Z23
(6.11)

From Equation 6.11, the evolution vector field η in a neighborhood of P in R
3 is given

by Equation 6.12, which is given in a representation in terms of the normal vector field

and tangent vector fields to each offset surface.

η = n1 −
(
(a1 − a2)Z12 + b1Z13

)

= n2 +
(
c1Z23 + a2Z12

)

= n3 −
(
b2Z13 + (c2 − c1)Z23

) (6.12)

Proposition 6.3.1 η is tangent to the A3
1 curve.

Proof. For this discussion, we temporarily consider separate time variables ti for the

three different surface regions σi. As σi (i = 1, 2 or 3) deforms under the eikonal flow

Figure 6.14. Tangent planes of offset surfaces σi with normals ni, i = 1, 2, 3 at a point
P . Pairwise intersections of offset surfaces are along Z12, Z23, Z13.
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with varying ti, there will be a unique surface point for a given time ti in the neighbor-

hood of any point Q that lies within the volume swept out by the deforming surfaces.

By the inverse function theorem, ti is a differentiable function in the neighborhood of

Q. Consider the values of ti in the neighborhood of Q as a scalar field. Since each

point on σi is deforming along the corresponding surface normal vector ni, ∇ti = ni.

Therefore, the directional derivative of ti along ni, ∇ni
ti = 〈∇ti, ni〉 = 1. Further, the

directional derivative of ti along Zij and Zik are zero since they are in tangent plane of

σi. Therefore, the directional derivative of ti along η is ∇ηti = 〈∇ti, η〉 = 1.

Let ti be the time when σi reaches Q (i = 1, 2, 3). Define δ1j(Q) = t1 − tj, j = 2, 3.

The directional derivative of δ1j along η is ∇ηδ1j = ∇ηt1 −∇ηtj = 1 − 1 = 0. Thus, η

is tangent to the level curves of δ12 and δ13. Setting t1 = tj gives δ1j = 0, j = 2, 3, that

correspond to intersection points of the offset surfaces that are on the A3
1 curve. Hence,

η is tangent to the A3
1 curve at an A3

1 point.

The integral curve of η through P is a curve of triple intersection points and hence

follows the evolution of the A3
1 curve until a sink point is reached.

dχ

dt
= η(χ), χ(0) = P, χ(t) ∈ R

3 (6.13)

Furthermore, define vector fields on the parameter-time space as

νi = et + αieui
+ βievi , i = 1, 2, 3 (6.14)

α1 = (a1 − a2)〈−φ2, σ1v1
〉 + b1〈φ3, σ1v1

〉
β1 = (a1 − a2)〈φ2, σ1u1

〉 − b1〈φ3, σ1u1
〉

α2 = −a2〈φ1, σ2v2
〉 + c1〈φ3, σ2v2

〉
β2 = a2〈φ1, σ2u2

〉 − c1〈φ3, σ2u2
〉

α3 = b2〈−φ1, σ3v3
〉 + (c1 − c2)〈φ2, σ3v3

〉
β3 = b2〈φ1, σ3u3

〉 − (c1 − c2)〈φ2, σ3u3
〉

(6.15)

and el denotes the unit vector in the parameter-time space direction l, l = {t, u1, v1, u2

, v2, u3, v3}. Then, η = dσi(νi), i = 1 or 2 or 3. This implies that the integral curves

of νi are mapped by σi to integral curves of η. The corresponding integral curves of νi

will trace the evolution of the intersection curves in the parameter space.
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6.3.2.2 Tracing Algorithm for A3
1 Curves

We first classify the critical points and end points as source and sink points. Starting

points are computed from each type of source point using local geometric properties of

the medial axis [51] and Algorithm 5 is used to trace A3
1 curves from all starting points.

For each starting point, three initial points corresponding to the tangency points

of an A3
1 point are computed. The parameter values of the three initial points are

then refined to correspond to a point on the A3
1 curve using a Newton’s method for

Equation 6.16.
S1 + rn1 = S2 + rn2

S1 + rn1 = S3 + rn3
(6.16)

where r = rsrc+ δsrc is the radius of the maximal sphere at the starting A3
1 point, rsrc is

the radius of the maximal sphere at the source point and δsrc is a user-specified step size

(δsrc = 10−3 was used in our examples). The projection also computes the parameter

values of the three surface points corresponding to the starting A3
1 point.

There are three types of source points:

1. An A1A3 point provides one start A3
1 point. Let p and q ∈ R

3 be the A3 and A1

type contact points, respectively, of the maximal sphere on S. Let T1,p ∈ R
3, be

the unit length principal direction corresponding to κ1,p at p. T1,p is perpendicular

to the A3
1 curve at the A1A3 point [51]. Therefore, initial points f1 = p+ δsrcT1,p,

f2 = p−δsrcT1,p are computed and projected onto S. The corresponding parameter

values of the projected points and the parameter values of q are used to determine

a start point.

2. Source A3
1 critical points provide two start A3

1 points computed on either side of

nsrc, the normal to the plane containing the three surface points. The three initial

points are computed as projections of Si+ δsrcnsrc for one of the start points, and

as projections of Si − δsrcnsrc for the other start point.

3. A4
1 source points provide one or two start A3

1 points [51]. Each start point

corresponds to a three point subset of the four A1 type contact points of the

A4
1 point. Let Si, i = 1, 2, 3, be such a subset on S. The vector, dsrc, from the A4

1

point to the circumcenter of the triangle formed by Si, i = 1, 2, 3, is tangent to
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the A3
1 curve [51]. The three initial points required for a start point are computed

as projections of Si + δsrcdsrc.

Algorithm 5 Tracing A3
1 curves

INPUT SRC, SINK
OUTPUT Call, the set of all A3

1 curves
Call := ∅
for p := (u1, v1, u2, v2, u3, v3, t) ∈ SRC do
C := {p}
while p /∈ SINK do
ui := ui + αidt; vi := vi + βidt, i = 1, 2, 3
p := refine(u1, v1, u2, v2, u3, v3, t+ dt)
C := C

⋃{p}
end while
Call := Call

⋃
C

end for

In Algorithm 5, αi, βi are computed by first solving for aj, bj , cj, j = 1, 2 from

Equation 6.11 and substituting in Equation 6.15. In order to avoid numerical errors

accumulating over time, a Newton’s refinement step for Equation 6.16 with r = t + dt

is performed to project points accurately onto A3
1 curves [45].

6.3.2.3 Alternate Approach for Computing A3
1 Curves

We also present an alternate formulation of a vector that is tangent to A3
1 curves

away from transition points. This tangent vector is defined in euclidean (world) space

and can be used in place of the evolution vector field to trace A3
1 curve segments.

Suppose Si(ui, vi), i = 1, 2, 3 are the three surface points corresponding to the triple

intersection point P . Let O be the circumcenter of the triangle formed with S1, S2, S3

as vertices. Then the vector T = ~OP is tangent to the A3
1 curve through P [51]. By

computing a new tangent vector, T , at every step, A3
1 curve segments can then be traced

by solving the differential equation

dx

dt
= T (x), x(0) = P, x(t) ∈ R

3 (6.17)

Algorithm 6 is used to trace all A3
1 curves from source to sink points. Transition

points are first computed as presented in Section 6.2 and classified as source (creation)
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and sink (annihilation) points. Numerical improvement is performed at each step in

order to avoid errors from numerical integration using a refinement step for Equa-

tion 6.16 [45]. This numerical improvement step also computes the parameter values of

the three surface points corresponding to the new A3
1 point.

Algorithm 6 Tracing A3
1 curves

INPUT SRC, SINK
OUTPUT mall, the set of all A3

1 curves
mall := ∅
for p := (x, y, z) ∈ SRC do
m := {p}
q := p
while q /∈ SINK do
Integrate Equation 6.17 to obtain new point q
m := m

⋃{q}
end while
mall := mall

⋃
m

end for

6.4 Medial Surfaces

This section presents evolution vector fields to sweep out intersection curves of

offset surfaces under the eikonal flow. An algorithm to compute the surfaces of the

medial axis using the evolution method is then presented. Between transition points,

the evolution vector fields are integrated to compute a time trace of the evolving

intersection curves that, together with transition points, forms the medial axis A2
1

surfaces. The construction of the evolution vector fields will follow the same ideas

used in the Section 4.3 for the 2D medial axis case. It is an adaptation of that given

in [27] for the evolution of intersection curves of two different surfaces under generalized

offset flows. In our case, it is applied to the self-intersections of the offsets of a single

surface under the eikonal flow.

6.4.1 Evolution Vector Field for Intersection Curves

Consider two separate surface regions Si with unit normals ni and the offset sur-

faces under the eikonal flow by σi(ui, vi, t), i = 1, 2, respectively, at a point P on
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an intersection curve. If P is not a transition point, then σ1 and σ2 are not tangent

and hence, n1 and n2 are independent. n1 × n2 is tangent to the intersection curve.

W = n2×(n1×n2) is in the tangent plane of σ2. W is also orthogonal to the intersection

curve (Figure 6.15). Since n1 and n2 are independent, {σ1u1
, σ1v1

,W} are independent

vector fields, and hence a basis for R3. Thus, in the the neighborhood of P, we write

n2 − n1 = a1σ1u1
+ b1σ1v1

−W (6.18)

Since W lies in the tangent plane of σ2,

W = a2σ2u2
+ b2σ2v2

(6.19)

Combining Equations 6.18 and 6.19, we define an evolution vector field, ξ, in the

neighborhood of P in R
3 given by two equivalent representations

ξ = n1 + a1σ1u1
+ b1σ1v1

= n2 + a2σ2u2
+ b2σ2v2

(6.20)

Proposition 6.4.1 ξ is tangent to the A2
1 medial surface formed from the union of the

evolving intersection curves of σ1 and σ2.

Proof. For this discussion, we temporarily consider separate time variables ti for the

two different surface regions σi. As σi (i = 1 or 2) deforms under the eikonal flow with

Figure 6.15. Tangent planes of offset surfaces σi with normals ni, i = 1, 2, intersecting
along n1 × n2 at a point P . W ∈ TSσ2 .
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varying ti, there will be a unique surface point for a given time ti in the neighborhood of

any point Q that lies within the region covered by the deforming surfaces. By the inverse

function theorem, ti is a differentiable function in the neighborhood of Q. Consider the

values of ti in the neighborhood of Q as a scalar field. Since each point on σi is deforming

along the corresponding surface normal vector ni, ∇ti = ni. Therefore, the directional

derivative of ti along ni, ∇ni
ti = 〈∇ti, ni〉 = 1. Further, the directional derivative of

ti along σiui
and σivi

are zero since they are in tangent plane of σi. Therefore, the

directional derivative of ti along ξ is ∇ξti = 〈∇ti, ξ〉 = 〈∇ti, ni + aiσiui
+ biσivi

〉 = 1.

Define φ(Q) = t1 − t2, where ti is the time when σi reaches Q (i = 1, 2). The

directional derivative of φ along ξ is ∇ξφ = ∇ξt1−∇ξt2 = 1−1 = 0. Thus, ξ is tangent

to the level curves of φ. Setting t1 = t2 gives φ = 0, that correspond to intersection

points of the offset surfaces that are on the medial axis. Hence, ξ is tangent to the A2
1

surface at an A2
1 point on an evolving intersection curve.

Thus, we can follow the evolution of the intersection curve (where the evolving

curves remain transverse) by integrating the vector field ξ with initial conditions as the

points on the intersection curve.

dχ

dt
= ξ(χ), χ(0) = P, χ(t) ∈ R

3 (6.21)

Furthermore, define vector fields on the parameter-time space as ζi = et + aieui
+

bievi , where el denotes the unit vector in the parameter-time space direction l, l =

t, u1, v1, u2, v2. Then, ξ = dσ1(ζ1) = dσ2(ζ2). This implies that the integral curves of

the ζi are mapped by σi to integral curves of ξ. The corresponding integral curves of ζi

will trace the evolution of the intersections curves in the parameter space.

6.4.2 Algorithm for Computing A2
1 Surfaces

Given a connected set of samples representing an intersection curve at time t, a

discrete marching algorithm is used to trace each point onto a new intersection curve

at time t + dt using Equation 6.21. Suppose, P = σi(u
p
i , v

p
i , t) on an intersection

curve evolves to a point Q = σi(u
q
i , v

q
i , t + dt) after a small time dt, then (uq

i , v
q
i ) =

(up
i + aidt, v

p
i + bidt). ai and bi can be obtained by solving Equations 6.18 and 6.19. In

order to avoid numerical errors accumulating over time, the middle point algorithm [8]
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is used to project points accurately onto intersection curves and refine parameter values

simultaneously. Points on an intersection curve are resampled at every time step by

adaptively inserting or removing points such that they are approximately uniformly

spaced in R
3.

Starting from t = 0, Algorithm 7 is used to compute A2
1 surfaces. Intersection

curves can have A3 or A3
1 points at curve ends after certain transitions. Since A3 and

A3
1 curves are computed in a prior step, the evolution of such end points is performed

by tracking points on corresponding A3 and A3
1 curves. A1A3 and A4

1 points occur

at transition events only. Such points are added to intersection curve ends during

the transition to maintain topological structure of the medial axis. Every medial axis

point is associated with a set of parameter values, one for each contact point on S.

Each parameter designates a distinct region of S, where the intersection of the offsets

at time given by the radius of the maximal sphere results in the medial axis point.

During transitions, the correspondences between parameter values of the end points of

two interacting intersection curves are obtained using distance in parameter space to

consistently identify distinct regions of S. For example, let p and q be the end A2
1 points

of two interacting intersection curves. Let the parameter values of the two tangency

points for p and q be (u
(p)
i , v

(p)
i ), i = 1, 2 and (u

(q)
j , v

(q)
j ), j = 1, 2 respectively. (u

(p)
i , v

(p)
i )

and (u
(q)
j , v

(q)
j ) are matched based on the proximity in parameter space.

Algorithm 7 Computing surface sheets

1. Sort transition points in order of increasing time.

2. Increment t by small timestep dt.

3. If no transition points are encountered, evolve all current intersection curves to
t+ dt.

4. Otherwise, perform transition for each transition point encountered in increasing
order of t and evolve intersection curves not involved in the transition event.

5. If all transitions have been completed, then stop. Otherwise, repeat Step (ii).
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6.5 Results and Discussion

This section presents examples of 3D medial axis computation using the proposed

approach. In each example, the region of interest is bounded by a single tensor product

parametric biquintic B-spline surface. As explained in Section 6.1, the medial axis

singular set and transition points are computed prior to computing surface sheets of

a medial axis. Figures 6.16, 6.17 and 6.18 show several steps of the evolution of the

(self-)intersecting set of the eikonal flow for various shapes. In these figures, A1A3

points are indicated by purple spheres, A4
1 points by dark blue spheres, A3 curves by

thick blue curves, A3
1 curves by thick yellow curves and A2

1 surface sheets in dull violet.

Transition points are shown as green spheres and evolving intersection curve fronts are

shown as thick red curves.

Figure 6.16 shows several steps of the A2
1 surface computation for a deformed

ellipsoid shape. The medial axis singular set for this example is a single A3 curve.

The evolution starts at the left and right extremities of the shape that correspond to

curvature maximum creation points. The intersection curves merge into a single loop at

two simultaneous curvature saddle points that then annihilate at a distance maximum

point. The medial axis therefore consists of a single A2
1 surface bounded by a closed A3

curve.

Figure 6.17 shows several steps of theA2
1 surface computation for a deformed ellipsoid

shape with a fin. The medial axis singular set for this example consists of a closed A3

curve, another A3 curve segment with an A1A3 point at both ends and an A3
1 curve

(a) (b)

(c) (d)

Figure 6.16. Several stages of evolution of medial axis of a deformed ellipsoid.
Transition points are shown in green, evolving intersection curves are shown in red.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17. Several stages of evolution of medial axis of a deformed ellipsoid with a
fin. Transition points are shown in green, evolving intersection curves are shown in red.

connecting the two A1A3 points. Intersection curves are created at curvature maximum

points at the left and right extremities of the shape, as well as at the top of the model

corresponding to the fin. The intersection curves corresponding to the bottom surface

merge into a single loop at two simultaneous curvature saddle points. The intersection

curves then transition at the two A1A3 points and annihilate at a critical point on the

A3
1 curve.

Figure 6.18 shows several steps of the A2
1 surface computation for a more complicated

shape. Intersection curves are created at curvature maximum points (Figure 6.18(b)).

An A3 curve loop is formed after corresponding intersection curve segments merge at

curvature saddle points (right most A3 curve shown in Figure 6.18(b)). The intersection

curves undergo further transitions at fin points (Figure 6.18(c) and (d)) and then evolve

through the A4
1 point where three A3

1 curves flow into the A4
1 point and a fourth one

flows outward (Figure 6.18(e)). The intersection curves finally annihilate at a critical

point on the A3
1 curve (Figure 6.18(f)). The medial axis for this shape exhibits all the

generic structural elements presented in Section 1.2.2. There are two A3 curve segments

each having an A1A3 fin point at both ends. There is also one A3 curve loop. Four A3
1

curve segments meet at an A4
1 point shown as a dark blue sphere (Figure 6.18(b)). The
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18. Several stages of evolution of medial axis of an object with multiple inter-
connected medial surfaces. Transition points are shown in green, evolving intersection
curves are shown in red.

other ends of the four A3
1 curve segments correspond to the A1A3 fin points where they

meet A3 curve segments.

In addition to accurate points on the medial axis, the proposed approach also

accurately captures the topological structure of the medial axis. Figure 6.19 indicates

all entity types on the medial axis of the region shown in Figure 6.18. The medial axis

consists of surfaces (shown in orange, brown, bluish violet) bounded by edge curves

(thick blue), and branch curves (thick yellow) where surfaces meet. The medial axis

also contains fin points (purple spheres) where edge curves and branch curves meet, and

a six junction point (green sphere) where six surfaces (and four branch curves) meet

at a point. Since the evolution tracing is performed in parametric space, the boundary

locations corresponding to each medial axis point are known. Therefore, the distance

from each medial axis point to its corresponding boundary location is known, giving

the complete medial axis transform. Further, the method also indicates the direction

of increasing distance at all transition points, giving the shock structure [80].
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surface 1
fin point

edge curve
branch curve

six junction

surface 3

point
surface 2

Figure 6.19. Medial axis of region shown in Figure 6.18(a) with all entities labeled.

Figure 6.20 shows the result of using a discrete approach for computing the 3D

medial axis. The tight cocone [37] software was used to generate this result using a

surface sampling consisting of roughly 8600 points. Although the result can be improved

by using denser sampling of the object, this result illustrates typical issues with using

discrete approaches. These issues include holes in the medial surfaces and degenerate,

overlapping, and disconnected floating components. A3 curves, A3
1 curves, A1A3 points

and A4
1 points are not clearly identified and neither is their topological connection. This

information must be inferred in a manual postprocess after clean up or fixing operations

on the generated triangle meshes are performed.

Figure 6.20. Medial axis computed using a discrete approach [37]
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In Figure 6.21, the medial axis of the shown object consists of a single A2
1 surface that

is bounded by an A3 curve and an A3
1 curve. The A3 and A3

1 curves meet at both ends

at common A1A3 points. The A
3
1 curve is designated as an inessential fin curve in [34].

The term arises from the fact that if the A3
1 curve is collapsed and the corresponding

A1A3 points are merged the surface will be a 2-manifold with a single boundary (A3

curve) that is homeomorphic to a disk. Figure 6.22 shows a more complicated example

where some of the A3
1 curves form two loops that are connected at an A4

1 point in the

middle. Each loop is also connected to an A4
1 point at the other end.

Although the approach is presented for the generic situation, the examples pre-

sented above do have certain nongenericities. For example, in the examples shown in

Figure 6.16 and Figure 6.17, there are two simultaneously occurring curvature saddle

point transitions that modify the same set of evolving intersection curves. Further, in

the example shown in Figure 6.17, there are two simultaneously occurring A1A3 points.

These situations are addressed as special cases in the implementation. The examples

shown in Figure 6.16 and Figure 6.17 also have degenerate points that are sharp corners

(a) (b)

(c)

Figure 6.21. Two views of the medial axis of a region consisting of a single A2
1 surface

with an inessential fin type A3
1 curve, where the A

2
1 surface turns into a fin onto itself [34].
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(a) (b) (c)

Figure 6.22. Medial axis of a region where a subset of the A3
1 curves form two loops

connected at an A4
1 point in the middle, and an A4

1 point at either end of the loops. (a)
Input object. (b) A3 curves shown in blue, A3

1 curves in yellow and transition points in
green. (c) A2

1 surfaces shown in dull violet.

at the left and right extremities. These points are computed as curvature maximum

points having a very small radius. Symmetrical regions typically result in nongeneric

situations. For example, the medial axis of a sphere is a single point and that of a

cylindrical region is a single curve. We are currently looking at extending the proposed

approach to address such situations.

The computational complexity of the proposed algorithm is directly proportional to

the number of transition points since it bounds the total number of intersection curves

over the entire evolution for a given model. Likewise, the number of critical points, A1A3

points and A4
1 points bound the number and hence computational complexity of A3 and

A3
1 curve tracing. Table 6.1 presents running times on an Intel x64 machine with four

cores and 8GB RAM for the examples shown here. It is evident from the table that most

of the time was spent in computing the transition points since that involves B-spline

root finding. We are currently investigating further enhancements to the root finding

algorithms to reduce computation time. Although the total running time is longer than
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Table 6.1. Computation Times (TP = Transition Point, C = Curves)
Biquintic surfaces A3 TP A2

1 TP A3
1 + A4

1 TP A3 C, A1A3 A3
1 C Surfaces

(control points) (min) (sec) (min) (min) (sec) (sec)
Fig. 6.16 : 13 × 9 18 35 40 4.4 - 2
Fig. 6.17: 15 × 9 23 36 40 5.3 1 3
Fig. 6.18: 17 × 15 55 59 90 40 1 7

is desirable, each stage of the proposed approach is automatic, presenting accurate

solutions with topology. Therefore, time consuming manual pruning and structure

extraction steps are not required.

The techniques for computing transition points of A3, A
2
1 and A1A3 types provide

all solutions. In order to reduce computation time for A3
1 and A4

1 transition points,

they were required to be at least further apart than 5% of the size of the parametric

domain in the examples shown. Therefore, no two transition events could occur within

a region of this size. The topology of the computed medial axis is correct up to this

specified accuracy. Between transition events, a much higher accuracy (10−4 of the size

of the model in R
3) was used to locate the medial axis points since the evolution of the

intersection curves is smooth.

6.6 Multisurface Models

We now consider the case when a region of interest is bounded by more than

one parametric B-spline surface. Multisurface models occur frequently in the area of

computer-aided design (CAD). The theoretical results are quite general and extend to

regions bounded by multiple surface patches stitched together since we present results

considering different regions of a single surface. In order to address such types of

models, computation of transition points involves a combinatorial search with subsets

of curves or surfaces. The implementation of algorithms for computing curve elements

and medial surfaces involves keeping track of the boundary components involved along

with corresponding parameter values. Further, designed or sculptured models typically

contain sharp edges and corners where surfaces meet. Sharp edges and corners introduce

nongeneric behavior that are addressed in our approach. Surfaces joined at a sharp edge



101

will introduce a medial edge curve that is a degenerate A3 curve along the edge. Three

degenerate A3 curves corresponding to sharp edges meet at a corner. An A3
1 curve is

also incident at the corner point.

Figure 6.23 shows a model bounded by six smooth parametric B-spline surfaces

and its medial axis. The medial axis consists of thirteen A2
1 surfaces that are bounded

by twelve A3
1 curves and the sharp edges of the model. Some of the A3

1 curves have

a sharp corner of the model as an end point. The medial axis also contains four A4
1

points. Figure 6.24 shows several stages of the medial axis computation for this model.

Figure 6.24 (a) shows all the sharp edges and corners of this model. Figure 6.24 (b)

shows all the A4
1 points and A3

1 curves of its medial axis. Figures 6.24 (c) - (g) shows

intermediate stages of the evolution of the A2
1 surfaces of its medial axis. Figure 6.24

(h) shows the complete medial axis.

(a) (b)

Figure 6.23. Result of medial axis computation on a multisurface model. (a) A model
consisting of six parametric B-spline surfaces and (b) its medial axis. Medial surfaces
are shown in dull violet, A3

1 curves in yellow, A4
1 points as green spheres, sharp edge

curves in dull violet and corners as dark blue spheres.



102

6.7 Summary

A new algorithm for computing the medial axis of regions in R
3 bounded by tensor

product parametric B-spline surfaces is presented. The generic structure of the 3D

medial axis consists of A2
1 surfaces along with a singular set of A3 curves, A3

1 curves,

A1A3 points and A4
1 points. The proposed approach is based on the eikonal or grassfire

flow of the bounding surfaces along the inward surface normal direction. The eikonal

flow results in special transition points that create, modify or annihilate evolving (self-)

intersection curves of the corresponding offset surfaces. The transition points as well as

A1A3 and A4
1 points are computed by solving geometric equations using B-spline based

root finding techniques. The geometric equations are of high degree and dimensions

and several strategies for reducing the computation time are provided. A3 curves are

computed using the technique presented in 5. A3
1 curves are computed using a new

evolution based tracing approach. A2
1 surfaces of the medial axis are computed as a time

trace of the evolving (self-) intersection set under the eikonal flow using an adaptation

of the technique presented in [27] in conjunction with techniques for addressing special

transition events of the eikonal flow.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.24. Several stages of evolution of medial surfaces of a multisurface model.
A4

1 points are shown in green, evolving intersection curves are shown in red.



CHAPTER 7

SHAPE ANALYSIS USING MEDIAL AXES

AND RIDGES

This chapter presents several new techniques to augment computed ridges and me-

dial axes to present enriched geometric and structural information. Some applications

of the augmented structures are presented. The following sections are presented:

• Section 7.1 introduces a graph-theoretic approach for analysing the 3D medial

axes to infer structural relationships between entities of medial axes and thereby

their interpretation on the boundary surfaces.

• Section 7.2 introduces a new approach for shape analysis using 2D medial axes of

level sets of scalar functions defined on surfaces.

• Section 7.3 extends the approach presented in Chapter 5 to compute ridges directly

from volumetric data using smooth representations and demonstrates the benefits

of such an approach.

• Section 7.4 introduces a new type of region-based shape analysis technique in the

neighborhood of ridges.
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7.1 Structural Analysis of 3D Medial Axes Using
Graph Cycle Bases

The 3D medial axis consists of a collection of surfaces bounded by medial edge curves

and junction curves. There is a natural desire to automatically segment the medial axis

into its constituent pieces to enable localized modification of corresponding surface

regions and selection of suitable subsets to obtain simplified object representations.

With a suitable method to determine salient subsets of the medial axis, this will enable

simplification of the object representation to retain only the subparts corresponding

to the salient pieces of the medial axis. Constructing a graph representation has been

the goal of several works in order to enable its use in computational shape matching

and analysis applications. A review of existing approaches for graph-based analysis of

medial axes is presented in Section 7.1.1.

We present a new method to compute salient features of an object from its medial

axis. First, we propose a discrete representation of the 1-complex of a medial axis

(Section 7.1.2) called the medial representation graph (MRG) (Section 7.1.3). A feature

corresponds to a cycle in the MRG. The set of cycles in a graph forms a group under

Z2 addition. Then, a basis for this group (the cycle basis) corresponds to a set of

features that we term as being salient. The definition of cycle bases is presented in

Section 7.1.4. Since the cycle basis spans the cycle group, the features corresponding to

the basis cycles span the set of all possible cycle features of a medial axis with the union

operator. Therefore a cycle basis of the MRG is a representation of salient features for a

new type of shape analysis framework. Section 7.1.5 presents computed examples of the

cycle basis of the MRG for medial axes and their application in surface segmentation.

7.1.1 Related Work on Graph-based Analysis of Medial Axes

The 2D medial axis has a straightforward graph structure, which is not the case

for the 3D medial axis. Giblin and Kimia [51] suggest a hypergraph structure of

the medial axis consisting of nodes (fin and six junction points), links between nodes

(boundary and junction curves) and hyperlinks between groups of links corresponding

to medial surfaces. Inspired by the natural graph structure of 2D medial axes, the

goal of their work was to characterize generic behavior of 3D medial axes so that a
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similar graph structure may be obtained. Based on this idea, Leymarie [47] presents

a directed graph representation called the medial shock scaffold consisting of shock

nodes connected by a network of shock links. Shock nodes are points that generate,

propagate or annihilate entities of the medial axis. Combinatorial geometric techniques

are presented to estimate shock scaffolds from 3D point clouds [47] and polygonal

meshes [80]. An initial set of shock sources of medial surfaces is computed by considering

pairs of generators (points or polygons) and an iterative algorithm for linking shock

nodes in increasing order of the corresponding radius function values at the nodes is

presented. New shock nodes may be created during the linking step of the algorithm

that are used to link nodes in later steps. However, fin points and medial boundary

curves are not considered in their algorithm. Graph matching techniques are then used

for shape registration applications using shock scaffolds [23].

Zhang et al. [119] construct directed acyclic graphs (DAG) from the medial axes of

voxelized objects. Vertices of a DAG correspond to components (surfaces) of the medial

axis and edges are inserted between adjacent components (those sharing a common

junction curve). Voxels corresponding to different medial entity types are distinguished

based on the average outward flux of the gradient of the distance (to object surface)

function. Connected components are extracted and ranked based on the number of

contributing voxels in each of them where components contributing more voxels are

deemed more salient. A DAG is then created by arranging components in order of

their saliency and inserting edges between components that share junction curves. This

graph structure presents a hierarchical representation of the components of a medial

axis that is then used for shape matching as presented in [119].

Damon [34, 35] presents a theoretical framework for organizing the components of

medial axes of generic objects of arbitrary genus into multilevel graphs. Irreducible

components of the medial axis are first identified based on topological slide operations.

The first-level graph structure is then created based on adjacencies of the irreducible

components. The irreducible components are then cut along junction curves to obtain

the Y-network which is the second level graph structure.
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7.1.2 1-complex of the 3D Medial Axis

We consider the 1-complex of a medial axis consisting of A1A3 points, A4
1 points,

A3 curves and A3
1 curves [51]. In the generic situation, the 1-complex of 3D medial

axes forms a graph-like structure consisting of points (A1A3 fin points, A4
1 six junction

points) connected by curves (A3
1 junction curves, A3 edge curves), or closed curve loops,

that bound medial surfaces. We define a feature of a medial axis as the connected

set of medial surface points bounded by a loop in the 1-complex since it corresponds

intuitively to a component or part of an object. We present a new approach for analyzing

the structure of the 1-complex by decomposing it into a set of constituent loops (that are

minimal is some sense) from which salient features of a medial axis are reconstructed.

Salient features computed using the proposed approach form a set of building blocks

for the object.

7.1.3 The Medial Representation Graph

In this section we define the medial representation graph (MRG) that will serve as a

discrete representation of the geometry and topology of the 1-complex of a medial axis.

The MRG is a multigraph with one vertex for each entity of the medial representation,

and edges connecting adjacent entities. There are four different types of entities (of

differing dimension) in the 1-complex that we denote using the terms in Table 7.1.

Figure 7.1 illustrates the MRG for the medial axis shown in Figure 1.2 (b).

Remark 1 The MRG of a medial representation is unique.

We note some basic properties of vertex neighborhoods in the MRG.

Table 7.1. Entities and Their Labels
Entity Vertex

A1A3 fin point F
A4

1 6-junction point S

A3 edge curve E
A3

1 junction curve J
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Figure 7.1. An illustration of the 1-complex of the medial axis from Figure 1.2 (b)
and its MRG.

1. An A3 curve E is adjacent two A1A3 points when they are open. When closed,

they are isolated vertices.

2. An A1A3 point F is always adjacent to one A3
1 curve J and one A3 curve.

3. An A4
1 point S is adjacent to four A3

1 curves. Two of the A3
1 curves could be the

same forming a loop. The MRG in this case is a multigraph.

4. An A3
1 curve is adjacent to two point type entities (A1A3 or A4

1). The curve can

also be a closed loop or loop at an A4
1 point. It is an isolated vertex in the former

case and has multiedges in the MRG in the latter case.

7.1.4 Cycle Basis of a Graph

We review the definition of the cycle basis of a graph as presented in [72]. Let

G = (V,E) be an undirected graph. A cycle in G is a subgraph of G in which each vertex

has degree exactly 2. Note that this subgraph might have more than one component.

We can represent each cycle by a characteristic vector over E (a 1 in coordinate i

indicating that edge ei is present, and a 0 indicating absence), in which case the set of

cycles forms a vector space over Z2. A cycle basis for G is a basis of this vector space,

and consists of a set of cycles. The cycle basis is a compact way of describing all cycles in

a graph; while there may be exponentially many cycles in G, the cycle basis has exactly

|E| − |V |+CC(G) elements (where CC(G) is the number of connected components in

G). We note that these definitions extend to the case when G is a multigraph; in this

case, each parallel edge is treated as a distinct edge (and thus a distinct dimension in

the associated vector space).
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Let w : E → R
+ be a weight function on E, and let the weight of a cycle as the sum

of its edge weights. The minimum weight cycle basis is then a cycle basis of minimum

total weight. Such a basis can be computed in polynomial time; the first such algorithm

was given by Horton in 1987 [65].

Graph cycle bases have been applied to geometric problems such as extracting

topological information from point clouds [55] and meshing genus-1 point clouds [125].

Conceptual relationships between cycle bases and generators of the homotopy group

and the first homology group of 2-manifolds have been exploited in various geometric

algorithms [46, 36, 25].

7.1.5 Application of the Cycle Basis of the MRG
for Shape Analysis

The central observation here is that a cycle basis of the MRG determines salient

features of the medial surface. We illustrate this with the example shown in Figure 7.1.

The cycle basis for this example is trivial. It consists of the two constituent cycles.

Each cycle corresponds to a medial surface component shown by the blue and orange

colored surfaces in Figure 1.2 (b). An isolated E vertex in this example corresponds

to an A3 curve bounding a single medial sheet. An isolated J vertex will correspond

to an A3
1 curve bounding three medial sheets. Note that in general multiple isolated

vertices might correspond to a single sheet (the medial surface of a multihandled torus

is one example).

Using the medial axis computation approach presented in Chapter 6, the MRG and

cycle basis can be automatically computed for B-spline models. Figure 7.2 presents

the MRG and a cycle basis for the model presents in Figure 6.19. Each component of

the model corresponding to its basis cycle is mapped onto the surface as shown by the

orange, brown and dull violet colors in Figure 7.2 (c) and (d). This presents a medial

axis based surface segmentation.

Figure 7.3 presents an example of a computer-aided design application using this

information. The surface region corresponding to one of the basis cycles is trimmed

(and separated from the model) as shown in Figure 7.2 (a). The trimmed region is

replaced with a different surface in the same region. In Figure 7.2 (b), points on the
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(c) (d)

Figure 7.2. Cycle basis analysis of a B-spline model shown in Figure 6.19. (a) a sketch
of the medial axis with MRG vertex labels. (b) basis cycles of the MRG. (c) cycle basis
features of medial axis mapped onto surface to obtain segmentation (side view). (d)
top view of the same result.

replacement surface are offset by an amount proportional to the magnitude of the larger

principal curvature of corresponding points on the original surface.

The cycle basis approach can be applied when the medial axis is computed using a

discrete approach as well. However, manual analysis of the structure of the 1-complex

is a tedious process for complicated medial axes. Figure 7.4 presents an example of

the cycle basis approach using a polygonal surface model of a hip bone (Figure 7.4 (a))

and its medial axis (Figure 7.4 (b)) computed using the tight cocone algorithm [37]. A

sketch of its MRG showing all entities of the 1-complex of its medial axis is shown in

Figure 7.4 (c). The medial axis contains all types of generic entities of the 1-complex

of a medial axis. The medial axis also contains several inessential fins where a surface

sheet turns into a fin onto itself [34] (See Figure 7.4 (c)). The cycle basis for the MRG

mapped to geometry on the medial axis is shown in Figure 7.4 (d) where each basis

cycle is shown in a different color. There are six basis cycles for this medial axis. The
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(a) (b)

Figure 7.3. Structural component-based design. (a) The surface region corresponding
to one basis cycle component is trimmed. (b) The corresponding surface region is shrunk
using a curvature-based variable offset.

medial axis feature associated with each basis cycle is shown in Figure 7.4 (e).

When mapped to the object surface, the cyan, magenta and green features seem

to have a close correspondence to the ilium, ischium and pubis anatomical regions of

the hip bone, respectively (Figure 7.4 (f)). This observation is a strong indication that

medial axis features computed using the cycle basis identify a set of sub parts of which

an object is composed. Figure 7.4 (f) also presents a new type of surface segmentation

based on the structural composition of an object.

The above examples demonstrate the cycle basis approach to compute a set of

salient features using medial axes. Equal weights were used for all edges in the MRGs

for computing cycle bases. Under this condition, the segmentation of the medial axis

arising from the computed cycle basis given results similar to [109]. However, weights

can be assigned to edges in the MRG based on geometric properties of the medial entities

that may result in other features. For example, saliency measures such as separation

angle [49, 123], fire-front meet angle [100], object angle [39] and weak feature size [24]

may be used. The cycle basis approach therefore enables a generalized framework for

computing salient features.
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(c) (d)

(e) (f)

Figure 7.4. Cycle basis analysis of a hip bone model. (a) polygonal surface mesh of a
hip bone. (b) medial axis of the surface mesh. (c) a sketch of the corresponding MRG.
(d) basis cycles computed using the proposed approach shown in different colors. (e)
salient features corresponding to basis cycles (features shown with color of the basis
cycle). (f) medial basis features mapped on surface mesh to obtain segmentation.
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7.2 Shape Analysis Using Scalar Functions
on Surfaces

This section presents a new method for shape analysis using scalar functions defined

on surfaces. This is joint work with Tobias Martin and Guoning Chen.

Several techniques for structural analysis of shapes using topological analysis of

scalar functions defined on the boundaries of 3D objects (polygonal) are surveyed in [11].

The level set diagram [78] is one such example where structural information is computed

by extracting geometric information at several level sets of a scalar function defined on

the surface. The level set diagram presents structure as a skeleton consisting of curve

segments that is constructed by connecting barycenters of isocontours corresponding to

the level sets.

We present a generalization of this concept, where structural information is extracted

by computing 2D medial axes of regions bounded by the isocontours at level sets of

a scalar function. Evolution of the medial axes along level sets with monotonically

varying isovalues provides information about structure of the shape. When the medial

axes are aggregated in a sweeping manner across all level sets, it presents a medial-

like structure for the entire object. Accurate 2D medial axes are computed using the

approach presented in Chapter 4 of this dissertation. Automatic creation of graph

structures of 2D medial axes that is a result of correct topology conforming to generic

structure computed using our approach, as well as accurate computation directly from

smooth representations that do not introduce extraneous artifacts, enable the sweeping

operation to generate consistently connected curve and surface elements of the medial

structure.

The computational procedure for this approach begins with a specification of a Morse

function on the object. The object is then decomposed into a sequence of nonplanar

slices. Each slice is a level set of the Morse function. Each slice is flattened using an

algorithm such as LSCM [79] or ABF++ [114] and its boundary is approximated with

a closed parametric B-spline curve. A medial axis is computed for each component of

every slice using the approach presented in Chapter 4. The computed medial axes are

then mapped back onto the respective nonplanar slice (unflattened). Starting from the
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first slice, the medial structure for the object is iteratively constructed by matching and

connecting the medial axes of two adjacent slices until the last slice is reached. For

smoothly changing geometry of the boundary, there are only two generic transitions of

the 2D medial axis [50]. In our approach, adjacent slices are created close enough so that

their boundaries are assumed to change smoothly. This enables a simple graph matching

algorithm that addresses both topological changes to match two successive medial axes.

A triangulation is created between matching pairs of medial curve segments.

Figure 7.5 (a) shows an object represented by a polygonal mesh. Figure 7.5 (b)

visualizes isocontours of a user-specified Morse function on the object. Figure 7.5 (c)

shows several slices of the object that are level sets of the Morse function. Figure 7.5

(d) shows the 2D medial axes of the level sets. Figure 7.5 (e) shows the result of

connecting successive pairs of 2D medial axes. Colored surface sheets indicate structural

components. Different surfaces are distinguished by tracking segments of the 2D medial

axes as they grow and die over the range of isovalues used to generate them.

7.2.1 Examples and Discussion

We present examples of this approach for shape analysis of 3D polygonal objects

using user-defined scalar Morse functions on the surface. Figure 7.6 presents examples

for several objects and a comparison of a medial axis computed for each object using a

discrete algorithm [91]. The results indicate that the swept medial structure presents

the global structure of an object. For the chosen set of Morse functions, the swept

medial structures are similar to the actual medial axis.

The iterative construction of the swept medial structure allows us to track topo-

logical changes of the medial axes of slices along the user desired cutting orientation.

As shown in Figure 7.6 (left column), differently colored sheets represent the evolution

of their individual feature components of the 2D medial axes. This result must be

performed manually in the case of a 3D medial axis computed using a discrete approach,

and is therefore tedious and time-consuming. Simplification of the medial axes of the

level sets results in contraction to single points. This leads to a hybrid structure where

curve segments are created in tubular regions and surfaces are generated in other more

general regions shown in Figure 7.6 (c) and (e).



115

(a) (b)

(c) (d)

(e)

Figure 7.5. Structural analysis using 2D medial axes. (a) Input polygonal mesh. (b)
Scalar Morse function defined on surface. (c) Level sets of scalar function. (d) 2D
medial axes of level sets. (e) Connected medial structure indicating structural features.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6. Swept medial structure (left) computed using our approach, and medial
axis (right) computed using a discrete algorithm [91]. Different surface sheets in our
results are shown in different colors. The scalar functions used for computing the swept
medial structures are also visualized (left).
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7.3 Ridges from Isosurfaces of Volumetric Data

Ridge curves have been found to be useful as landmarks for shape matching [56,

98, 122]. Such applications typically have input in the form of volumetric MRI or CT

images (3D scalar-value grids), and the surface of interest a level-set or isosurface at

a given scalar value. Three-dimensional data grids are also abundantly available from

simulation data where the resulting grids approximate solutions of discretized partial

differential equations, and in the field of graphics and visualization in the form of level

set models [18].

Using implicit trivariate B-spline representations of the isosurface of interest, we

present a generalization of the tracing algorithm for parametric B-spline surfaces to

extract all generic ridges of the isosurface directly from the smooth representation.

As presented in Section 2.3, existing approaches for extracting ridges from isosurfaces

of volumetric data tend to result in sets of disconnected ridge segments or tend to

have undesirable undulations. By tracing on a smooth representation, the extracted

ridge curves conform to generic behavior and are therefore continuous connected curves.

B-splines act as low pass filters on the data grid and tends to smooth out high frequency

characteristics such as noise and thus the ridges do not have unexpected undulations.

In addition, a smooth representation allows robust detection of isolated umbilics, and

thus, ridges around umbilics, to present a complete solution.

7.3.1 Implicit B-spline Representation of Isosurfaces
of Volumetric Data

Consider a parallelepiped region Ω ⊂ R
3, where Ω = [a1, b1]× [a2, b2]× [a3, b3]. Let

f : Ω → R be a C(4) trivariate function that maps a point (x1, x2, x3) ∈ Ω to a scalar

value. Given a specific isovalue â ∈ R,

I = {(x1, x2, x3) : f(x1, x2, x3) = â} (7.1)

forms an implicit surface also called an isosurface or level set at isovalue â. If ∇f 6=
[
0 0 0

]T ∀(x1, x2, x3) ∈ I, the isosurface is guaranteed to be a 2-manifold [15].

The implicit function theorem states that around every point on the isosurface there

exists a neighborhood in which the isosurface can be represented as a Monge surface
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using at least one of (x1, x2), (x2, x3), (x3, x1) as parameter variables. For example,

when ∂f

∂x3
6= 0, there exists a scalar field g(x1, x2) such that the isosurface can be

represented as S(x1, x2) = (x1, x2, g(x1, x2)) where f(x1, x2, g(x1, x2)) = â. The first,

second and third order partials of S(x1, x2) are computed using this framework which

is in turn required to evaluate principal curvatures, principal directions and curvature

gradients at any point (x̂1, x̂2, x̂3) ∈ I. The reader is referred to [120, 127] for derivation

of the formulae for computing principal curvatures, principal directions and curvature

gradients defined on the implicit surface.

In this work, f(x1, x2, x3) is a trivariate B-spline defined as

f(x1, x2, x3) =
n∑

i=1

ci Bi,d,Γ(x1, x2, x3), (7.2)

where ci ∈ R are the coefficients of a n1 × n2 × n3 control grid and i = (i1, i2, i3)

and n = (n1, n2, n3) are multiindices. Every coefficient has an associated piecewise

polynomial basis function

Bi,d,Γ(x1, x2, x3) :=
3∏

j=1

Bij ,dj ,Γj
(xj), (7.3)

whereBij ,dj ,Γj
(xj), j = 1, 2, 3 are linearly independent B-spline basis functions. Bij ,dj ,Γj

(xj)

as defined in [29] is a piecewise polynomial of degree dj with knot vector Γj = {tjk}
nj+dj
k=1

that has local support and is C(dj−1). In order for the ridge functions φ1 and φ2 to be

continuous, third order derivative smoothness is required (dj = 4). In this case, Γj is a

uniform and open knot vector where the first five and last five knots of Γj are aj and

bj respectively. To distinguish crests from other types of ridges, fourth order derivative

smoothness (dj = 5) is required to compute second derivatives of curvatures. In this

case, Γj is a uniform and open knot vector where the first and last six knots of Γj are

aj and bj respectively.

Given a scalar-valued volumetric grid, we represent the region using a trivariate

B-spline by using the scalar values as coefficients ci in Equation 7.3. The corresponding

B-spline basis functions can be viewed as smoothing low pass reconstruction filters [87]

of the samples ci that does not introduce additional geometric features on the isosurface.
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7.3.2 Generalization of Tracing Algorithm

The tracing algorithm for implicit trivariates follows the same framework of advanc-

ing and sliding from seed points. This section presents techniques for addressing new

challenges that arise with computing seed points and tracing with the implicit trivari-

ate representation. Curvatures, principal directions and curvature gradients required

for evaluating the ridge function are computed using a local parameterization of the

isosurface given by the implicit function theorem [120].

7.3.2.1 Seed Points

Extremal points of κi and umbilics are computed as simultaneous roots of three

equations in three unknowns as given in Equations (7.4) and (7.5), respectively,

f(x1, x2, x3) = â

∂κi(x1, x2, x3)

∂x1

= 0

∂κi(x2, x2, x3)

∂x2

= 0

(7.4)

f(x1, x2, x3) = â

∂Q(x1, x2, x3)

∂x1

= 0

∂Q(x1, x2, x3)

∂x2

= 0

(7.5)

wherein the isosurface is locally parameterized using (x1, x2) and coefficients of the LHS

are computed symbolically. When using the (x1, x2) parameterization, it is assumed

that ∂f

∂x3
6= 0 so that the implicit function theorem is valid. However it is possible that

∂f

∂x3
= 0 within Ω. Therefore, similar equations are derived for (x2, x3) and (x3, x1)

parameterizations and seed points are computed using these parameterizations as well.

In practice, obtaining roots of these equations using techniques presented in [43,

45] is computationally very demanding in terms of both time and memory even for

reasonably sized trivariate B-splines. We have developed several optimizations to reduce

compute time.
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First, subregions of the trivariate that potentially contain the isosurface are ex-

tracted. The domain of the trivariate in Section 7.3.1 is [t1d1+1, t
1
n1−1] × [t2d2+1, t

2
n2−1] ×

[t3d3+1, t
3
n3−1]. Every knot span subdomain {[t1k1 , t1k1+1] × [t2k2 , t

2
k2+1] × [t3k3 , t

3
k3+1]}, k1 =

d1 + 1 . . . n1 − 2, k2 = d2 + 1 . . . n2 − 2, k3 = d3 + 1 . . . n3 − 2, is extracted as a Bézier

trivariate and retained if the range of f(x1, x2, x3) within the subdomain contains the

isovalue of interest. The convex hull property of the trivariate Bézier representation

enables an efficient test of checking the 1D AABB of the coefficients of f(x1, x2, x3) of the

region representing the subdomain for this purpose. Since the subdomains are typically

very small for a reasonably high resolution data set, a large number of subdomains are

rejected in this step. Table 7.2 compares the percentage of subdomains retained for

seed point computation for some of the examples presented here.

Second, computing coefficients of the LHS of the equations symbolically is still

computationally expensive even though they are in Bézier form. An expression tree

approach was presented in [43] to reduce computational demands of multivariate B-

spline constraint solvers especially when the different terms in an equation are functions

of different independent variables. In our work, the high degree terms in the equations

for computing seed points are functions of the same independent variables x1, x2 and x3.

We have developed a variant of the expression tree approach to address this situation.

The equations are represented as expression trees as in [43] and coefficients are computed

only for f(x1, x2, x3) and its partial derivatives up to third order, which are low degree

terms. It should be noted that a term involving a partial derivative of f appears

multiple times in the LHS of the equations. In the expression tree approach of [43],

a copy of this term is stored in every repeated leaf node. This can lead to redundant

subdivisions of each copy. In our method only one global copy of each term is stored and

only the global copies of the terms are subdivided during the subdivision step. This

Table 7.2. Isosurface Subdomains
Model Source Size of trivariate Subdomains % of subdomains

control grid with isosurface with isosurface
Skull CT scan 128 x 128 x 128 73447 3.5
Silicium Simulation data 34 x 34 x 98 15231 13.4
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approach is similar in spirit to the idea presented in [43] for efficient data structure

management using reference counted pointers but were proposed for cases when the

leaf nodes of an expression tree are functions of different independent variables. The

AABBs for a subdomain are computed using interval arithmetic as presented in [43].

In our experiments, we have found that this reduces computation time by over an order

of magnitude. Constraint solving by computing the coefficients for a Bézier trivariate

subdomain took about four minutes on average per parameterization. The optimized

approach presented here required a few seconds.

In addition, in some cases, seed points may have to be computed for all three

possible parameterizations of the isosurface (Section 7.3.1). However, in our experiments

we noticed that most of the time a single parameterization is sufficient for a given

subdomain. In order to determine an appropriate parameterization, we first select one

such parameterization xixi⊕1. If the range of ∂f

∂xi⊕2
potentially does not have a zero

within the subdomain, then this parameterization is the only one used for computing

seed points. If ∂f

∂xi⊕2
does potentially have a zero within the subdomain, then one of the

other two candidate parameterizations are similarly tested. It is possible that ∂f

∂x1
, ∂f

∂x2

and ∂f

∂x3
all potentially have a zero (but not at the same point) in which case all three

parameterizations are used.

Further, the constraint solver for different subdomains are executed in parallel since

they are independent. These optimizations significantly reduce time and thus enable

seed point computation for large data sets.

7.3.2.2 Tracing

The following additional issues are addressed for tracing:

1. At each step of the trace, it is imperative that the orientation of the normal of the

isosurface is globally consistent since the convention of which curvature, κ1 or κ2,

is the larger one is dependent on it. Since ∇f is the normal of the global implicit

representation at any point and is oriented consistently, the normal computed

using the local parametrization of the isosurface (Sx1 × Sx2) is compared with it.
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If the directions of the two vectors are opposite, then κ1, t1, ∇κ1 and κ2, t2, ∇κ2

are swapped and the signs of κi, ∇κi i = 1, 2 are changed.

2. It is assumed that ∇f 6=
[
0 0 0

]
. However, it is possible that up to two of the

quantities fx1 , fx2 , fx3 are zero at a point. At every advance and slide step of the

trace, the algorithm selects the most numerically appropriate parameterization

for evaluating the ridge function based on which of fx1 , fx2 , fx3 has the largest

magnitude. This enables tracing of ridges passing through such points and even

lying exactly on such points. All the ridges of the ellipsoid shown in Figure 7.10

lie along curves where either fx1 , fx2 or fx3 are zero since fxi
= 0 at xi = 0,

i = 1, 2, 3.

3. At every step, the trace moves off the isosurface (along one of the principal

directions) and is projected back onto the isosurface using a standard technique

of iteratively marching along ∇f until the isosurface is reached.

7.3.3 Results and Discussion

We demonstrate the method presented here on a CT scan, a 3D data grid arising

from simulation results, on implicit B-spline representations of isosurfaces resulting

from isogeometric analyses on a volumetric B-spline model, and on algebraic surfaces.

Ridges of κ1 are shown in blue and ridges of κ2 are shown in red. Crests are shown

as thicker curves. |φi| is used as a measure of the accuracy of the ridges extracted. A

user specified accuracy (typically 10−2 or 10−3) is used as an input parameter for the

tracing algorithm and all ridges extracted in generic regions using our method satisfy

the accuracy requirement.

Our algorithm has been implemented in the Irit modeling environment [41]. The

results presented here have been generated on an Intel Xeon X7350 processor with 32

cores and computation times are shown in Table 7.3. Since seed point computations for

different subregions are independent processes, a speedup roughly equal to the number

of threads is achieved using a parallel implementation. Similarly, ridge tracing from

different start points are also independent processes and a significant speedup could
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Table 7.3. Computation Time
Model Seed points (32 threads) Tracing (1 thread)

(minutes) (minutes)
Silicium 31 52
Skull 122 167
Cube (isogeometric) 12 2

be achieved using a parallel implementation. However, this has not been currently

implemented.

Figure 7.7 shows ridges and crests extracted from a CT scan where the skull isosur-

face is identified at intensity value 69.5. This result can be compared to the results in

Figure 15 of [127] and Figures 12, 13 , 19 and 20 of [92] that show crests extracted from

volumetric images of skulls. Figure 7.7 shows that our method captures a very high

level of detail with smooth crest curves whereas previous grid based methods result in

a sparse collection of fragmented crest segments. The crests on the top and side of the

skull correspond to scanning artifacts of the data set and are accurately captured by

our method. We attempted to create a polygonal mesh representation of the isosurface

using marching cubes but due to the geometric and topological complexity, the mesh

failed to be suitable for use with the ridge extraction method in CGAL even after

considerable manual effort to correct the errors. Afront [111] generated a suitable mesh

for the algorithm in CGAL after several hours of computation but many of the features

presented in the original data set were missing. Our method avoids issues related to

mesh generation for complex data sets and extracts ridges directly from B-spline filtered

smooth representations of the 3D grids.

Figure 7.8 compares ridges extracted on a 3D grid resulting from the Silicium

simulation1 using our method (Figure 7.8.(a)) with the method of [22] on a high

resolution isosurface mesh (335,000 triangles) extracted using marching cubes (Figure

7.8.(b)) and by isocontouring zeros of the Gaussian extremality on the isosurface mesh

using ParaView [1] based on the method presented in [126](Figure 7.8.(c)). However,

the isocontouring method has the drawback that the ridge type is unknown (See Sec-

1available at http://www.volvis.org
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(a) (b)

Figure 7.7. Ridges and crests extracted from an isosurface corresponding to a skull
from a CT scan. κ1 ridges are in blue and κ2 ridges are in red. Crests are indicated by
thicker curves.

tion 2.3). As shown in the close up views of part of the data set, ridges extracted

using the proposed method are smoother than the ridges extracted using the method

of [22], which are fragmented, have undesirable undulations and do not capture many

ridges. The ridges extracted using the isocontouring method also have large undulations.

In addition, the topology of the ridges extracted using the isocontouring approach is

incorrect in many areas where κ1 and κ2 ridges cross each other, as noted in [22].

There has been recent impetus in the area of isogeometric engineering analysis [67],

where partial differential equations are solved directly on CAD representations of objects

by avoiding any conversion into conventional finite element representations such as hex-

ahedral meshes that only approximate the CAD models. Simulation results are obtained

directly on the CAD representations and are therefore more reliable. As an example,

we solve linear elasticity equations on a cube represented as a trivariate B-spline to

examine the vertical displacements resulting from loads applied at the top of the cube.

The isosurface at a particular displacement value (that is now an implicit B-spline)

identifies all locations within the volume that have the same vertical displacement.
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(a) (b) (c)

Figure 7.8. Ridges extracted from the level set of simulation data of the Silicium
model using (a) the proposed approach; (b) method of [22] on isosurface mesh; (c)
isocontouring method of [126] using Gaussian extremality. In (c) all ridges are shown
in purple since the ridge type is unknown.

Ridges and crests are extracted directly from the higher order trivariate implicit B-spline

representation of the isosurface to reveal additional structural information about the

distribution of this vertical displacement within the cube. Crests indicate areas where

there is a sharp change in the stress-strain relationship within the cube and may provide

better insight for engineering analysis. Figure 7.9 (a) and (b) shows the results for

the cube under slightly different vertical loads and the variation in geometry of the

corresponding isosurfaces. While crests indicate major variations in the geometry of

the two isosurfaces, the noncrest ridges also indicate higher order structural differences

in the stress-strain relationships.

Figures 7.10 and 7.11 show all ridges extracted on an ellipsoid, a tangle surface

and a smooth dodecahedron represented as algebraic functions. Exact trivariate Bézier

representations of the algebraic functions are determined using the multivariate version

of Marsden’s identity [88]. The exact structure of ridges and umbilics on ellipsoids

are well documented in the existing literature [102] and Figure 7.10 validates that our
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(a) (b)

Figure 7.9. Ridges extracted from isosurfaces resulting from linear elasticity analysis
on a cube represented as a trivariate B-spline under vertical loads. The loads in (a) and
(b) vary slightly. The color map on part of the volume indicates the z displacement
where blue indicates almost no displacement and red indicates larger displacement. The
isosurfaces in both images correspond to z displacement value of 4e−5. The ridges and
crests indicate regions where the interior of the volume with a specific z displacement
changes sharply.

approach accurately extracts all ridges and umbilics on the ellipsoid. One of the partial

derivatives of the algebraic function f(x1, x2, x3) is zero along each ridge and two of the

partial derivatives are zero at the six poles. Similar issues are present on the tangle

function and the smooth dodecahedron as well. In addition, the surface normals for

both examples computed using local parameterizations given by the implicit function

theorem do not always agree with the function gradient direction. The results show

that our method is robust to both situations. Figure 7.11 (b) shows the different

types of ridges on a smooth dodecahedron including crests, noncrest elliptic ridges and

hyperbolic ridges. Figure 5 of Ohtake et al. [95] shows only the crests extracted from a

polygonal representation of this surface which are similar to the crests shown here.
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Figure 7.10. Ridges extracted using the proposed approach on an ellipsoid (algebraic
function) represented with a single trivariate Bézier patch. Umbilic points are shown
in green.

(a) (b)

Figure 7.11. Ridges extracted using the proposed approach on alge-
braic functions represented with a single trivariate Bézier patch: (a) Tangle:
x4 − 5x2 + y4 − 5 y2 + z4 − 5 z2 + 11.8 = 0. (b) Smooth dodecahedron:
x6 + y6 + z6 + 20(x4y2 + y4z2 + z4x2) = 1. Umbilic points are shown in green. In
(b) thick blue and red curves correspond to crests, thin blue and red curves correspond
to noncrest elliptic ridges, thin green and yellow correspond to hyperbolic ridges of κ1

and κ2, respectively.
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7.4 Geometrically Significant Regions Associated
with Ridges

There can be a large number of ridge curves on a surface indicating complicated vari-

ations in curvature, although not all of them may be useful for a particular application.

Therefore it is necessary to be able to distinguish between those that may be important

or not depending on the target application. Typically, ridges that indicate stronger

local geometric variation are more stable with respect to small surface deformations

than others and may hence be more useful for shape analysis applications. Several

approaches to defining ridge strength exist in the current literature. For example, it

has been defined as the integral of the magnitude of the curvature along the ridge lines

in [95]. The integral of the magnitude of the ridge functions were considered in [129] to

create similar strength measures. Ridge sharpness has been defined as integral of the

second derivative of the curvature in the principal direction in [22].

All of the earlier methods for quantifying the importance of ridges account for

geometric properties only at ridge points, partly due to the fact that their computational

framework required discrete surface representations. We present a new method, enabled

by direction computation with smooth surface representations, that also considers neigh-

borhoods of ridges to create measures of ridge significance. We define salient regions

associated with major ridges (Section 7.4.1) to indicate geometrically significant regions

on surfaces. Salient regions provide additional information for studying geometric

variation of similar shapes, and are especially useful when the ridges themselves and

geometric properties at ridge points do not provide sufficient information. We present an

example of such a situation and show how the salient regions can be used for analyzing

geometric variation.

7.4.1 Salience Boundaries and Salient Regions

Elliptic ridges (defined in Section 1.5) are identified in our work as major ridges

and hyperbolic ridges are identified as secondary ridges. At a major ridge point, where

κ1 has a local maximum that is not a turning point, the corresponding principal curve

is transverse to the ridge. By following the principal curve away from the ridge point,

eventually a point is reached where κ1 has a local minimum that is a point on a secondary
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κ1-ridge. Along the curve between these points there is a point where the function κ1

changes from concave downward to concave upward where κ1 has an inflection point

on the curve between the local maximum and minimum (at tT1Hκ1t1 = 0). There is

a second inflection point reached by flowing along the principal curve from the major

ridge point in the negative principal direction. We term these inflection points the

salience boundary points of the corresponding major ridge point and we term the flow

along the principal direction from the major ridges to the salience boundary points the

salience flow. Salience boundary points of major ridges of κ2 are identified in a similar

manner by flowing along principal curves of κ2.

The salience boundary for a major ridge then is the collection of salience boundary

points identified from the flow along the corresponding principal curves from the major

ridges. The regions surrounding such a ridge curve and bounded by the salience

boundaries defines salient regions associated with the major ridges. In order to compute

salience boundaries and salient regions, principal curves are traced from each major

ridge point on either side of the ridge using the method presented in [86]. The first

inflection points on both sides, identified as the location where the sign of tTi Hκi
ti

changes, are marked as salience boundary points.

Figure 7.12 indicates major and secondary ridges on a surface. Figure 7.13 illustrates

salient regions on the surface determined using the proposed definition. For elliptic

ridges of κ1, salient regions are shown in green, while for elliptic ridges of κ2, the salient

regions are shown in yellow. Narrower salience boundaries correspond to ridge points

and surface regions that are more salient than others.

It is possible for multiple inflection points to exist between a major ridge and a

secondary ridge along a principal curve. In this case, the first inflection points reached

by flowing from the major ridge points are treated as the salience boundary points.

In Figure 7.14 there are other inflection points that occur on the κ2 principal curves

between the magenta and red ridges and the number of such points is consistent with

the number of sign changes of tT2Hκ2t2 between major and secondary ridges. Note that

there are no additional ridges between the additional inflection points. This is validated

in Figure 7.14 b) where the sampled ridge function for κ2 is shown. In this image, the
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a) b)

Figure 7.12. Major and secondary ridges of an object; a) side view, b) top view.
Major ridges of κ1 are shown in cyan and those of κ2 are shown in magenta. Secondary
ridges of κ1 are shown in blue and those of κ2 are shown in red.

intensity of the red color is higher in the regions closer to a κ2 ridge.

7.4.2 Properties of Salience Boundaries

With the exception of turning points on a ridge, the principal curve pi corresponding

to a principal curvature κi for that ridge is transverse to the corresponding ridge. In a

small neighborhood of a nonturning point x0, generically, the principal curvature does

not have critical points at inflection points, so the implicit function theorem implies

that the inflection points form a regular differentiable curve. Generically this curve is

transverse to the corresponding principal curves and is disjoint from the corresponding

major ridge curve except at isolated points. These properties can fail in two distinct

ways at isolated points. One is when the inflection point is degenerate (Figure 7.13),

and then the curve of inflection points meets the corresponding major ridge (which ends

there). The other is when the curve of inflection points is tangent to the principal curve

at a point disjoint from the corresponding major ridge.
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inflection point
Degenerate

Figure 7.13. Salience boundaries and salient regions associated with major ridges.
For κ1, major ridges are shown in cyan, principal curve segments in salient regions
are shown in green and inflection points are shown in dark blue. For κ2, major ridges
are shown in magenta, principal curve segments in salient regions are shown in yellow
and inflection points are shown in dark red. Also shown is a closeup of a region that
indicates a degenerate inflection point.

7.4.3 Properties of Salient Regions

Consider a convex elliptic ridge. Suppose the principal curvature κ1 is large. A large

curvature corresponds to a small radius of curvature. If the ridge is part of a larger

region, then this high curvature can only be maintained for a short time along the

corresponding principal curve. Hence, the decrease must be rapid initially which then

begins to decrease more gradually. This is where an inflection point occurs. Hence,

the salient region is concentrated in a small region about the major ridge curve, as

illustrated in Figure 7.13 at the cyan ridge in the center of the image where the surface

is sharply curving. If instead the curvature is much smaller, then the decrease can

be more gradual so the inflection point occurs much farther along the principal curve.

Then, the salient region is much larger but changes more gradually. The cyan ridges

on either side of the image center of Figure 7.13 illustrate this behavior. Also, in

Figure 7.14 a) the salience boundaries of κ2 are further away from the magenta ridge

since the curvature change is more gradual.
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a) b)

Figure 7.14. Occurrence of multiple inflection points between a major and secondary
ridge even without existence of additional ridges in between them. a) Salience boundary
points and other inflection points on principal curves traced from a few major ridge
points. b) Results superimposed on surface indicating sampling of κ2 ridge function.
For κ1, major ridges are shown in cyan, principal curve segments in salient regions are
shown in green and inflection points are shown in dark blue. For κ2, major ridges are
shown in magenta, principal curve segments in salient regions are shown in yellow and
inflection points are shown in dark red.

7.4.4 Analyzing Geometric Variation Using Salient Regions

Salient regions are an effective visualization tool for analyzing higher order geometric

properties of surfaces. They are especially useful in distinguishing geometric properties

of a population of similar objects when ridges on the surfaces occur at similar locations.

Figure 7.15 shows front and back views of an object that is slightly asymmetric. The

major and secondary ridges are slightly different on the front and back sides of the

model but do not clearly distinguish the differences. In particular, the major ridge

running along the bump of the model is almost identical on both sides. In this case

the salient regions clearly indicate the geometric differences and enable quantitative

evaluation of the differences. The differences are clearly visible from the top view of

the object as shown in Figure 7.16.
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a) b)

c) d)

e) f)

g) h)

Figure 7.15. Visualizing geometric differences using salient regions. a) front view and,
b) back view of a slightly asymmetric object, c) and d) major ridges only, e) and f) all
ridges, g) and h) salient regions.
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a)

to principal curve
Salience boundary tangent

b)

Figure 7.16. Visualizing geometric differences using salient regions. a) the major
ridge corresponding to the bump in the surface lies in the center on both asymmetric
regions, other major ridges are slightly different across plane of symmetry, b) salient
regions clearly indicate geometric differences in the asymmetric regions pointed by the
arrows. Also shown is a close up view of a region that contains a point where the
salience boundary is tangent to the principal curve.



CHAPTER 8

CONCLUSIONS

The medial axis was conceptualized by Blum in the late 1960s and has since become

an important geometric structure for the analysis of objects in a variety of geometric

processing applications. Although mathematical properties of the medial axis are well

documented in the existing literature, before completion of this body of research, state

of the art techniques had been able to compute only pieces of medial representations

for discrete approximations of objects, and without topological structure. This can be

attributed in part due to the complexity in structure and inherent nonlinearity of the

medial axis [113]. Considerable human interaction is required in order to infer topolog-

ical information. Discrete approximations of smooth geometry introduce artifacts that

are not part of the medial axis of regions bounded by smooth surfaces and considerable

effort is required to remove them. The few techniques that use smooth representations

only compute partial solutions for a restricted set of objects.

This dissertation proposes a new higher order methodology, based in part on results

from both B-spline theory and singularity theory, that automatically computes medial

axes of objects, in 2D as well as 3D, directly from smooth geometry representations. The

computed medial axes are accurate up to user specified accuracy and include correct

structural information. Since smooth geometry representations are used, the method

does not generate nonmedial artifacts. In 2D, this dissertation presents an approach to

compute medial axes of planar regions bounded by closed parametric B-spline curves.

In 3D, this dissertation presents an approach to compute medial axes of volumetric

regions bounded by closed parametric B-spline surfaces. B-splines are extensively

used for representing a large variety of geometric data. The B-spline representation

is the de-facto standard for designed models in the field of computer-aided design
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(CAD). Therefore, the computational techniques presented in this dissertation are

widely applicable.

Accurate and automated computation of topological structure opens new avenues

and methods for analyzing geometry and structure. We present a graph-theoretic

approach for analyzing the structure of 3D medial axes, that in turn is useful for shape

analysis of objects by enriching the surface representation with structural and inherent

geometric information. We also present a new technique for structural analysis of 3D

objects using scalar functions defined on their surfaces. We compute 2D medial axes for

an ordered set of slices of an object obtained as level sets of the defined scalar function.

When the medial axes of the slices are connected, they form a skeleton-like structure

that presents structural and geometric information. We present a computational pro-

cedure for this approach for 3D polygonal objects and demonstrate several examples.

Several applications that utilize geometric information could benefit from the proposed

approaches.

Edge curves of the medial axis correspond to a subset of ridges on a surface.

Ridges have been found to be an important geometric feature in their own right, and

have been used in several shape analysis applications. We present a new algorithm

to extract ridges directly from smooth parametric surfaces. We also extended that

approach to compute ridges from isosurfaces of volumetric data (3D medical images,

simulation results) using smooth implicit B-spline representations. The resulting ridges

are shown to have guaranteed accuracy and improved quality. Computing with smooth

representations also enables a new method for further analysis of intrinsic geometric

properties of surface not only at ridge points, but also in their neighborhoods. We

introduce a new definition of salient regions and demonstrate its usefulness in shape

analysis. Region-based shape descriptors are gaining emphasis for anatomical shape

analysis to overcome the limitations of point-based descriptors [6] and the salient regions

defined here may be used for such applications.

We present several examples where the genericity assumption is relaxed and address

the manifestation of nongeneric behavior in their 3D medial axes. The examples

include objects with sharp corners, sharp crease edges and situations where transition
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points occur simultaneously. Other types of nongeneric situations can also occur for

multisurface models. Regions bounded by symmetrical entities such as cylindrical,

spherical or pairwise planar and opposite surfaces will create degenerate situations in

the medial axis. It is necessary to effectively address such nongeneric situations to apply

this method to such models.

The computation time is limited by the root finding steps in the presented tech-

niques. There is still much scope for improving the performance of equation solvers

in general. A parallel processing approach is one option that may have potential

in addressing high dimensional systems. In this dissertation, we present specialized

hierarchical and parallel processing approaches to make the approach more practical.

These ideas could be extended further for addressing B-spline root solving in general.

This dissertation presents a dynamic computational framework, in conjunction with

powerful B-spline based tools, for geometric problems whose solutions are higher di-

mensional entities, such as curves or surfaces, instead of isolated points. By identifying

special critical points and tracking the evolution of the solution between them enables

computation of the topological structure, thereby giving connected higher dimensional

elements. This approach can be applied to other types of geometric problems whose

solutions are higher dimensional entities.
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