
hopCP: A Concurrent Hardware Description Language

VENKATESII AKELLA
GANESH GOPALAKRISHNAN

UUCS-91-021

Venkatesh Akella
Department of Computer Science

University of Utah
Salt Lake City, UT 84112, USA

Ganesh Gopalakrishan
Department o f Computer Science

University of Utah
Salt Lake City, UT 84112, USA

November 25, 1991

A b s tr a c t

hopCP is a language for the specification, simulation, and synthesis o f hardware systems. hopCP captures
the behavior o f a hardware system by specifying the causal relationships between actions that the system
can perform. No specific tim ing discipline is implied by a hopCP specification. Hence, hopCP specifica
tions can be implemented as synchronous, asynchronous, or mixed synchronous and synchronous circuits.
Salient features o f hopCP include nonatomic actions, synchronous and asynchronous styles o f value com
munication, broadcast channels, a purely functional sublanguage to express the computational aspects o f
hardware behavior, and an efficient tool (called parComp) to infer the composite behavior o f a collection o f
hopCP modules. Operational Semantics o f hopCP in terms o f labeled transition system s is presented. A
few examples are described to illustrate the expressive power o f hopCP. A sum m ary o f the implementation
is also presented.

Formal Aspects o f VLSI Research Group
University o f Utah, Department o f Computer Science

hopCP: A Concurrent Hardware D escrip tion Language

VENKATESH AKELLA* (akella@cs.utah.edu)
GANESH GOPALAKRISHNANt (ganesh@bliss.utah.edu)

D ep t, o f C o m p u te r S c ience

U n iv ers i ty o f Utah

S alt Lake C ity , Utah 84 1 1 2 ,

A b s tr a c t . h o p C P is a language f o r the specification, s im u la tio n , an d sy n th es is o f h ardw are s y s te m s . h o p C P

captures the behavior o f a hardw are s y s te m by specify ing the causal re la t io n sh ips between actions that the

s y s te m can p e r fo rm . N o specific t im in g d isc ip l ine is im p lied by a h o p C P specification. Hence, h o p C P specifi

ca tion s can be im p le m e n te d as synchronous, asynchronous, o r mixed syn ch ro n ou s a n d asynch ron o u s circuits .

S a lien t f e a tu re s o f h o p C P include n o n a to m ic ac tions , syn ch ro n ou s and asyn ch ron o u s s ty le s o f value co m

m u n ica tion , broadcast channels , a pu re ly fu n c t io n a l sublanguage to express the c o m p u ta t io n a l aspects o f

h ardw are behavior, an d an eff ic ien t too l (ca l led parComp^ to in fer the com p o s ite behav ior o f a collec tion o f

h o p C P m odules . O pe ra t io n a l S e m a n t ic s o f h o p C P in t e r m s o f labeled t r a n s i t io n s y s t e m s is presen ted . A fe w

exam p les are descr ibed to i l lu s tra te the express ive p o w e r o f h o p C P . A s u m m a r y o f the im p le m e n ta t io n is also

presen ted .

‘ Supported in part by a University of Utah Graduate Research Fellowship
tSupported in part by NSF Award MIP-8902558

mailto:akella@cs.utah.edu
mailto:ganesh@bliss.utah.edu

2 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

1 Introduction

W ith the ability to integrate many thousands of transistors on a single VLSI chip, the
task of producing error-free and high-performance circuits is an increasingly challenging
one. Today, entire VLSI chips are seldom specified in terms of circuit diagrams or truth
tables: they are specified using Hardware description languages (HDLs). HDL descriptions
are increasingly being used to document the intended behavior of the system , capture design
refinements, support formal verification, and are the main input for provably correct high-
level synthesis algorithms.

No consensus has been reached on the constructs that an HDL should include. This is
despite ongoing standardization efforts [VHD85, SST90]. There are also notable omissions in
the HDLs in use today. These include lack of a well specified and simple semantic definition

for the HDL, inadequate notations for specifying concurrency, and inadequate support for
system design issues. We now elaborate on these points, and present our HDL hopCP that
is designed to rectify some of these omissions.

Most VLSI circuits are implemented as synchronously clocked sequential circuits. In fact,
synchronous design is so widespread that many HDLs as well as high-level synthesis algo
rithms based on these HDLs heavily rely on the synchronously clocking assumption.

It is widely recognized that it is not very practical to design system s beyond a certain
size as synchronous systems. The problem of reliable (skew free) clock distribution is the
most widely cited reason for not building large synchronous system s. There are, however,
many more reasons. Most large digital systems behave less like slaves that help implement
operations such as add or factorial; they behave more like concurrent processes that syn
chronize, communicate, and coordinate their computations with similar units, to achieve a

common computational goal. Therefore, whether a system is built using synchronous circuits
or asynchronous circuits, from the point of view of conceptual modeling it is often important
to be able to specify the system as a collection of concurrent processes. Doing so allows

design requirements to be clearly specified, and ad hoc design decisions to be avoided early

in the design. After all, the decision to synchronously clock is only an implementation deci
sion , whereby synchronization between concurrent processes is implicitly achieved (i.e., not
explicitly, using hand-shaking signals.)

Virtually all the popular HDLs available today either omit concurrent process modeling
primitives altogether, or provide only very low level primitives. W ithout the support of
high-level concurrency primitives, specifying concurrent behavior can be a nightmare. This

is clearly evident from the experience of researchers in Operating Systems in the 60’s and

early 70’s, who faced difficulties such as the ease of introducing deadlocks, the difficulty of

HOPCP: LANGUAGE AND SEMANTICS 3

analyzing concurrent programs, etc. In the same vein, descriptions of complex VLSI chips
written HDLs that provide only low level concurrency primitives are unreadable, and overall
very unreliable.

The communicating process paradigm pioneered by Milner [RM89] and Hoare [Hoa85],
among other researchers, has become one of the most popular ways of organizing concurrent
programs. This view is also gaining in popularity as an HDL primitive [Mar89, BS89, May90].
We also adopt this view in hopCP. Our work provides convenient extensions in the form of
multiway rendezvous [Cha87] wherein a collection of processes can include one sender and
more than one receiver, and they all rendezvous on a channel.

As an alternative to synchronous design, many researchers have proposed a fully asyn
chronous design approach [Mar89, Sut89, BS89, GJ90, Ebe89]. Though highly promising,
asynchronous design will, in all likelihood, not entirely supercede synchronous design. In the
near future, we can also expect mixed synchronous/asynchronous designs [MC80, Cha84] to
be built.

Thus, concurrent processes that communicate through rendezvous can either be compiled
directly into asynchronous circuits [Mar89, BS89, May90, AG91a] in a fully synchronously
clocked style [Ku91, PL91], or in a mixed style. Whichever way concurrent processes are
implemented in circuits, it involves the refinement of high level actions into partial orders of
simpler actions. For example, the rendezvous communication action is refined into a partial
order of signal transitions on wires. As another example, in the design of instruction pro
cessors, high level operations (multiply) get refined into partial orders of simpler operations
(a shift-add loop). Hierarchical refinement o f time is one o f the crucial aspects o f VLSI
design. Thus, in addition to including high level concurrency primitives, the HDL of choice
for designing large system s must be a language that also permits actions to be hierarchically
refined. hopCP is such an HDL.

It is very constraining to adhere to just the rendezvous style of communication: the hard
ware designer may prefer to write specifications directly using other forms of communication
and synchronization such as spin waits on “status signals”, etc. In order to support such
styles of specification, hopCP offers the feature of asynchronous ports. Another use of asyn
chronous ports is the following. HDL descriptions using rendezvous communications are
eventually compiled into circuits whose components support signal assignments (= signal
transitions). A natural organization of such a compiler, especially with a view to facilitate
proving its correctness, is to present the compilation algorithm as a collection of hierarchical
action refinement rules whose correctness can be established separately. Since these rules
effect source-to-source transformations, the HDL used has to include both rendezvous ac
tions and signal assignment actions. An example of an asynchronous port is a status signal,

4 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

such as the “buffer em ptif signal for a buffer. This signal is raised by the sender when the
buffer actually becomes empty. Once set, the sender can proceed in its computation without
waiting for the receiver to sample the signal. Also notice that the receiver can sample buffer
empty several times; each tim e it samples the signal, it does not involve the sender. Modeling
this behavior using rendezvous is awkward because rendezvous is a higher level communica
tion primitive where the sender and the receiver have to wait for each other before they can
proceed. .

One assumption we make of asynchronous ports is that the value written onto the port
by a writer is “instantaneously” seen by all the readers of this port. In an asynchronous
hardware implementation, the notion of “instantaneous” translates into some form of data
bundling constraint [Sut89]. In a synchronously clocked implementation, on the other hand,
“instantaneous” may mean ‘all readers see the data within the cycle in which the write
occurs’.

In the hopCP compilation system, we can often determine through static analysis that the
receiver will begin sampling an asynchronous port only after the sender has finished writing

on the port. In this case, asynchronous ports can be realized very cheaply, using just a

register to hold the data. If we cannot rule out that the receive will be concurrent with the
send, then suitable circuits (e.g. an arbiter-based circuit such as an A T S module described
in [Kel74]) can be employed. (If the inputs to the A T S module are signaled concurrently,
the module effectively serializes the inputs and then takes action based on the result of
serialization.)

The above is just one of the static analysis techniques that we have developed for synthe
sizing efficient/sim ple circuits from hopCP specifications. We use a very similar same static
analysis technique to derive efficient circuits for the choice construct of hopCP, and also to
permit concurrent, and speculative guard evaluation. These details are reported in [AG91d].

To summarize, a system-design oriented HDL must include the following features.

• T em p o ra l a b str a c t io n m ech a n ism s: By temporal abstraction, we mean “lack of
commitment to any specific timing discipline” . As actions are temporally refined,
specific timing details (e.g. two-phase clocking, mixed synchronous/asynchronous) can
be incorporated.

• F le x ib le S ty le s o f C o m m u n ica tio n : Much diversity in VLSI circuits arises due to
the communication mechanisms that they use, such as explicit synchronization (via

handshake signals), implicit synchronization (via clocks), polling, broadc.isf. etc. It
is important that we do not rule out some of these useful styles of communication in
hardware by com m itting to any one of them in the HDL itself.

• F u n ctio n a l V ie w o f C o m p u ta tio n : There are several styles for specifying compu
tation, such as procedural (e.g. C), functional (e.g. Pure Lisp), relational (e.g. Pure
Prolog), etc. Functional languages are particularly appealing for describing computa
tional aspects of hardware because their referential transparency (the ease of replacing
equals by equals). The implicit parallelism in a functional description helps specify
concurrency in computations naturally. This can reduce the expense of data flow

analysis. .

• F orm al S e m a n tic D e sc r ip tio n : Having a simple and well specified formal semantics
helps in the following ways: ,

— P r o v id e la n g u a g e referen ce: One of the primary objectives of specification-
driven design is to establish correctness of the design before indulging in the

expensive activity of actually building the circuit. Verification becomes very dif
ficult, if not impossible, if the specification language does not have a clear formal
definition.

— A ss is t in F orm al V erifica tion : Hardware verification using theorem proving
tools is wasteful to apply to circuit descriptions that contain errors that can be
detected more cheaply and automatically through other means; for example, pro
cess composition tools have been shown to be very useful in detecting many errors
automatically [CPS89, GFAM89, GF91]. If no errors are detected, process com
position returns an abstracted version of the design which can, then, be subjected
to more rigorous verification.

— H e lp S y n th e s iz e E ffic ien t C ircu its: Process composition is also employed

in hopCP to help synthesize area-efficient circuits. We first obtain an abstracted
process. We then analyze it to determine whether its asynchronous ports are used

in an exclusive read/write mode, whether its alternative commands are determin
istic, etc. This information helps us select more efficient circuits as reported in
[AG91d],

— A ss is t in T estin g : In addition to establishing correctness, formal reasoning may
reveal useful information in the form of invariants which can be exploited for test
case generation during simulation, incorporation of self-diagnostic features during
synthesis, etc.

O r g a n iza tio n o f th e p a p er

In section 2, we briefly examine related work. In section 3, we briefly describe the hopCP

design environment. In section 4, we provide an informal introduction to the language,

HOPCP: LANGUAGE AND SEMANTICS - 5

6 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

with examples. In section 5, we informally describe the structural operators of hopCP. In
section 6 and 7, we present the formal semantics of hopCP. In section 8, we discuss the
hopCP implementation and in section 9 we provide concluding remarks.

Salient F eatures and P rim ary A p p lica tion D om ain

hopCP can be best characterized as a functional language augmented with constructs to

specify concurrency and communication explicitly. One of the significant features of hopCP
is its lack of adherence to any specific timing discipline. hopCP retains the fundamental
state-transition system view of hardware, but is equipped with features to specify computa
tion in a purely functional style, specify concurrency without interleaving, and offer flexible
communication schemes.

In hopCP, only the causal relationships between a set of actions which capture the behavior
of the hardware are specified. Clocking and absolute tim ing relationships are delayed till the
synthesis phase. This makes hopCP eminently applicable for the specification of systems that
are comprised of loosely coupled communicating modules, each obeying non-trivial timing
protocols. At present, it may not be quite natural to use hopCP for the specification of
systolic designs or designs that decompose into regular array structures; this may, however,
be a possible future extension, if we incorporate the results of [Joh84] and [She85].

2 R elated Work

We have a wide spectrum of HDLs with different objectives and emphasis. The following
are some of the successful hardware description formalisms currently in use: trace theory
[Ebe89],CSP+probe [Mar89], Occam [BS89] used for the synthesis of pure asynchronous
circuits, trace theory [Dil89] for verification of asynchronous circuits, HardwareC [KM90] and
ISPS (with variations) [TLW+90] for synthesis of synchronous circuits, functional calculus
[Joh84] for synthesis and verification of synchronous circuits, and Verilog HDL [SST90] and
VHDL for modeling and simulation of synchronous and asynchronous circuits. It is difficult
to place hopCP in this spectrum because it is more like an amalgamation of the essential
ideas from the above formalisms. In hopCP the emphasis is in accurate modeling of hardware

phenomenon and providing facilities for functional simulation and high-level debugging of
specifications. We also support synthesis from hopCP specifications [AG91a], In this paper
we focus on the language design criteria and the formal semantics.

In fe r red parComp /

Behavior 4 \

Static
Analysis

In fe r red parComp |
benavior

Simulation

M odel for HFG

Action
Refinement

Synchronqus
Transformation

Asynchronous
ransformation

Synchronous Asynchronous

C ir c u i t Circuit

Figure 1: Flow Diagram of the hopCP Design Environment

3 hopC P D esign Environm ent

Figure 1 outlines the VLSI design environment planned around hopCP. The hopCP spec
ifications are parsed and compiled into an intermediate representation called H F G (hopCP
Flow Graph) which will be discussed in detail in this paper. Using a compiled-code con
current functional s imulator generator called CFSIM, we derive a simulation model for the
H F G (currently CFSIM generates a Concurrent ML program module). pa r C o m p is a tool
which operates on H F G s to infer the composite behavior of a collection of hardware modules
specified in hopCP. Act ion R e f i n e m e n t is a procedure by which H F G s are translated into

hardware. This procedure handles the familiar synthesis tasks of control/data decomposition
and resource-allocation. hopCP specifications can be refined into purely asynchronous cir
cuits (similar to [BS89]), purely synchronous circuits, or a mixture of both. Static Analysis

techniques can be used for performance optimization, at different levels of hierarchy. In this
paper we will focus on the specification language hopCP, and its formal semantics.

4 W hat is hopCP?

hopCP is a notation to describe a concurrent state-transition system called hopCP Flow

Graphs (henceforth referred to as a H F G s), augmented with features to model computation
in a purely functional style, and mechanisms to support synchronous and asynchronous

8 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

communication. In hopCP, hardware is modeled by a structural entity called a module

which contains two parts (i) a behavioral entity called a HFG (hopCP Flow Graph) which
captures the state-transition system describing the hardware in question, and (ii) a set of
communication ports with which the hardware interacts with its environment. A hopCP
specification has six sections described below out of which only the MODULE and the

BEHAVIOR section are mandatory.

(i) The MODULE section introduces the name of the module being described.

(ii) The TYPES section introduces the datatypes of the communication ports used in the
module. Currently we support two primitive types namely bit and bitvector. More
complex types can be built using the primitive types. For example, we could define a
byte as follows: byte : vector 8 o f bit.

(iii) The SYNCPORT section declares all the synchronous communication ports used in
the specification. A synchronous port allows rendezvous style communication as in

CSP. Rendezvous style of communication is characterized by the sender and receiver
synchronizing (waiting for each other) before exchanging the information. Synchronous
ports could be inputs or outputs which are distinguished by the last character of the
portname. For example, p? denotes a port p being used in the input sense while p!
denotes the same port being used in output sense. All ports in hopCP are unidirectional
i.e. they are either input or output.

(iv) The ASYNCPORT section declares all the asynchronous ports used in the specification.

An asynchronous port is a shared variable which provides value communication without
synchronization. Asynchronous ports can be used either as input or output and this
can be distinguished syntactically.

(v) The FUNCTION section contains the user-defined functions used in the specification.
The functions are written in a first-order functional language. The syntax of Standard
ML of New Jersey is used.

(vi) The BEHAVIOR section describes the state-transition system which captures the be
havior of the hardware system being specified. The state-transition system being de
scribed is called H F G and is discussed in detail in the following section.

Inform al Sem an tics o f H FG

First, we define S ta te , which models the state of one thread of control flow, and T rans i t ion ,
which defines a triple: (i) a collection of Sta tes (analogous to the input phiccs to a transition

HOPCP: LANGUAGE AND SEMANTICS 9

of a Petri net), (ii) a “transition” (analogous to a Petri net transition), and (iii) a collection

of post S ta tes (analogous to the output places of a Petri net transition).

S ta t e = P r o c N a m e x LocalStore

T r a n s i t i o n = V + (S ta te) x CompoundAct ion ® Guard x V +(Sta te)

where Guard, C ompound Act ion are syntactic objects which will be defined later and V and ®
denotes power set and disjoint sum operations on sets respectively. •

A hopCP flow graph is formally defined as a record with two fields:

H F G = (is tate C V (S t a t e) , trel C T r a n s i t io n)

A record is represented as a 2-tuple. Each component of the record is denoted by a field
name and its associated type. For example, is ta te is one field name, and its type (set of
allowed values) is any subset of V (S ta te) .

is ta te denotes the set of initial states of the specification, and trel denotes the set of
transitions in the H F G . A transition t r € T r a n s i t i o n is a triple (pre(tr) , act (t r) ,pos t(tr))
where pre(tr) denotes a set of states called precondition of the transition, post(tr) denotes
a set of states called postcondition of the transition, and act(tr) denotes the action of the

transition.

The execution semantics of a H F G are similar to that of a Petri net. Let t r £ T ransi t ion;
if t r is enabled (i.e. execution reaches pre(tr)) then the system performs actions act(tr) and
the execution reaches post(t r) . Note that no notion of clocks or tim e is being associated with
the performance of the actions act(tr). Also note that if more than one t r £ T r a n s i t i o n is

enabled, they can perform their respective actions concurrently, subject to synchronization
rules to be discussed later.

E xam p le 1

We illustrate the features of hopCP using a example of a pipeline stage. Figure 2 shows

a com plete hopCP specification of the pipeline stage. It does not have a ASYNCPORT
section. It declares an input synchronous channel a and and output synchronous channel b
of type byte. Figure 3 denotes the H F G corresponding to the hopCP specification shown in
Figure 2 and is textually described as follows:

h f9 i = { is ta te = {(P , [a:])}, trel = {((P , [x]), a ly , (Q, [x, y])), ((Q, [x, y]), b \ (f x y) , (P, [y]))}}

The above is the syntax of a record literal. Listed within braces (“{ ,> ’) are f i e l d j n a m e ,•
and f i e ld -va lue ; (separated by =) , for every applicable i.

10 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

MODULE exi

TYPES

byte : vector 8 of bit

SYNCPORT

a?,b! : byte

FUNCTION

fun f a b = if (index(a,0)=i) then update(b,2,0) else b;

BEHAVIOR

P [x] <= a?y - > b ! (f x y) - > P [y])

Figure 2: hopCP Specification of a Simple Pipeline Stage

Figure 3: hopC P Flow G raph (H FG) of hopC P Specification in E xam ple 1

a?y b!(f x y)

HOPCP: LANGUAGE AND SEMANTICS 11

It is more convenient to draw pictures to denote H F G s where circles denote the control
state names (P r o c N a m e) and horizontal lines denote the actions. The H F G is interpreted
(read) as follows: Module e x l is initially in a state (P, [a;]) where P is the control state

(known as P r o c N a m e) which is analogous to •program, counter in a conventional computer

while x is the datapath state (also known as LocalStore) which is a snapshot of its relevant
internal state. In the state (P, [x]) the system can engage in a communication action a?y
which will be henceforth referred to as a data query and go to a state denoted by {.Q, [x,y]).

Data query a?y denotes a rendezvous on channel a.

Note that by performing the action a?y the internal state of the system is modified to
include the value received on channel a which is reflected by the presence of the variable y

in the state (Q ,[x ,y]). We could have a synchronous communication action without value
communication, i.e. merely a? which is referred to as input control action.

We have just described the execution of the system via the transition ((P, [x]), a?y, (Q , [x, y])).
As a consequence of this execution we find that the transition ((Q, [x, y]), b \ (f x y), (P, [y])) is
enabled. In the state (Q , [x, y]), the module can perform the communication action &!(/ x y)
and proceed to the state denoted by (P, [y]). blexpr where expr £ E X P R is said to be
a data assertion and represents the synchronous communication action of outputting the
value denoted by the expression expr on the channel b. A data assertion without value
communication, for example just 6! is called an output control action.

In the example, expr is the application of user-defined function / on arguments x (original
internal state) and y (received as a consequence of the action a ly) . The function / could

involve arbitrary computation and is expressed in a purely first-order functional language.
hopCP has a wide repertoire of bit-level manipulation routines commonly used in hardware
system s like I s h i f t , r s h i f t , exor , subvector , index-vector , update-vector , par ity etc.
(P, [y]) denotes the fact that the system goes back to the same control state P (as the initial
state) but the datapath state is now y instead of x. In a programming language sense,
this could be viewed as invoking a function P with an actual parameter y for the fo rmal
parameter x.

E xam p le 2

The specification in Figure 4 illustrates some more features of hopCP. Figure 4 describes a

module ex2 which declares T x R D Y as an output asynchronous port (shared variable) of bit
type. It uses the same function definition / as in the previous example. Informally, module

ex2 starts in a state (Q , [x]), engages in an data query a?y, and depending on whether the

input value y is even or odd it proceeds to perform the data assertion b l (f x y) and an
asynchronous output action T x R D Y := 1 and goes back to its initial control state Q with

12 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

MODULE ex2

SYNCPORTS

a?,b! : byte;

c! : byte

ASYNCPORT

TxRDY! : bit

FUNCTION

fun f a b = if (index(a,0)=l) then update(b,2,0) else b; ■

BEHAVIOR

Q [x] <= a?y -> ((even y) -> (b !(f x y) , TxRDY := 1) -> Q Cy+i])
l((odd y) -> c! (subvector(y,0,4)) -> Q [y]) ■

END

Figure 4: Illustrating Alternate Behavior and Assignment Actions

its datapath state modified to the value denoted by y + 1 or performs c\(subvector(y, 0 ,4))
and returns to the initial control state Q with y as its datapath state. The behavior has the

following new features

1 . Assignment apo := expr where apo 6 A s y n c P o r t s is an assignment action. In module
ex2, T x R D Y := 1 is an assignment action which denotes the evaluation of the expres
sion expr (which is 1 in our example) and transmitting the value on the asynchronous

channel T x R D Y . An assignment action does not have to synchronize with a receiver
before transmitting the value. In this sense, it is asynchronous. Applications of this
style of communication include outputting status information and modeling system ini
tialization (reset). Misuse of asynchronous communication via shared variables could
lead to undesired behavior like m etastability and proclivity to deadlock. The details
of asynchronous communications and syntactic restrictions to avoid these problems is
discussed in section 6.

2 . Compound Actions A tuple of actions (a i , a 2, . . . , am) constitutes a compound action
and is characterized by the following features:

(i) a i , a 2, . . . , a m could denote data queries, data assertions, input control actions,
output control actions or assignment actions with the restriction that all a, and
a.j should be non-interfering , i.e. no two a,- and aj should use the same channel or
try to update the same variable. For example the compound actions (a l x , a l y , . . .)
and (a?x, 6?x, . . .) are not permitted.

HOPCP: LANGUAGE AND SEMANTICS 13

MODULE ex3

SYNCPORTS

a?,b! : byte;

b ? ,c ! : byte

FUNCTION

fun f a b = if (index(a,0)=l) then update(b,2,0) else b;

fun g a b = if (index(a,0)=0) then update(b,2,0) else a;

BEHAVIOR

(P [xl] <= a?yl -> b !(f xl yl) -> P Cyl])

I I

(q Cx2] <= b?y2 -> c !(g x2 y2) -> Q Cy2])

END

Figure 5: hopCP Specification Illustrating Parallel Behavior

(ii) Let (5 , (ai , a2, . . . , am), s') (E T r a n s i t i o n , the execution of the system in a state s
corresponds to performing actions (a i, a2, . . . , am) concurrently and going to state
s ' . The execution of the system via a compound action is analogous to that of
the cobegin/coend statem ent of concurrent programming languages.

In ex2, (&!(/ x y) , T x R D Y 1) denotes a compound action.

In hopCP conditional behavior is captured by guards and choice construct
(represented by ‘|’ in the textual syntax of hopCP). Guards are either boolean expres
sions, data queries (or input control actions) or both. We do not allow data assertions,
output control actions, or assignment actions in guards. The informal semantics of the

choice construct is as follows: all the guards are evaluated in parallel; the guard which

succeeds (a guards succeeds if its boolean expression evaluates to true and if the input
communication action succeeds) is picked and the execution moves to the correspond
ing state. If none of the guards succeeds, it denotes a error in the specification, and,
the system halts. If more than one guard succeeds, any one of them can be picked.
This introduces nondeterminism in hopCP.

In exam ple ex2, (even y) and (odd y) are the guards which control the system behav
ior. Expression guards can be specified with the help of user-defined functions in the
F U N C T I O N section of the specification.

3. Choice

E xam p le 3

14 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Figure 6: HFG of hopCP Specification in Example 3

The last two examples were basically sequential in nature except for the restricted form of
concurrency introduced by compound actions. Figure 5 is a hopCP specification of a con
current system with synchronization and value communication. It captures two independent
threads of activities corresponding to two stages of a pipeline coupled by a rendezvous on the
synchronous communication channel b. The stage described by P is capable of performing
an data query a l y l and a data assertion b \ (f x l y l) while the stage described by Q can first
engage in a data query b?y2 and then perform a data assertion on channel c. The actions
a?yl and c\(g x2 y 2) can be performed independently (hence concurrently) while the actions
b ly 2 and b \ (f x l y l) have to be performed synchronously. This is captured in the H F G
shown in figure 6.

The initial states (P, [xl]) and (Q , [x2]) are marked by arrows. Initially, a?yl can be per
formed by stage P while Q waits on action 6?y2. Once a?yl is completed, both stages P

and Q can engage in 6?y2 and b \ (f x l y l) which results in the datapath variable y2 in stage
Q getting a value denoted by the expression (/ x l y l) (referred to as value communication).
This is depicted by the annotation on the arc leading to control state 52. Once this syn
chronous activity is complete, stage Q can engage in c\(g x2 y2) and stage P can engage in
a ly 2 concurrently.

This illustrates synchronization and value communication between two agents and is known
as two-way rendezvous. In this example, the no compound actions are involved. If the actions

involved are compound actions, things become slightly more complicated and we ascribe a
semantics to it in the later part of this paper.

HOPCP: LANGUAGE AND SEMANTICS 15

BEHAVIOR

(P [xl] <= a?yl -> b!(f xl yl) -> P [yl])

I I

((Q [x2] <= b?y2 -> c ! x2 y2) -> q [y2])

I I

(R [x3] <= b?y3 -> d ! x 3 y3) -> R [y3])

)

END

Figure 7: hopCP Specification Illustrating Multiway Rendezvous

E xam p le 4

Finally we present an example which illustrates the notion of multiway rendezvous in
hopCP. Synchronization and value communication shown in the previous example involved
two agents (one performing a data query, and one capable of the corresponding data as
sertion). Multiway rendezvous is said to occur when there is more than one agent willing
to perform a data query corresponding to a data assertion, (note that the converse of the
situation that of more than one agent asserting a value on the same channel does not make
much sense) Multiway rendezvous is a powerful notion which facilitates the specification of
a wide variety of concurrent algorithms very naturally [Cha87]. It subsumes broadcast style
of communication (point to multipoint communication) which is very natural in hardware,
but not supported by many popular HDLs currently being used for synthesis. It does not
mean that these things are impossible to specify without multiway rendezvous; but, it be
comes awkward to model them in terms of two-way rendezvous. Figure 7 shows a hopCP
specification (just the behavior section is shown for convenience). It illustrates multiway
rendezvous on channel b.

Initially, only the stage P can make any progress by engaging in a l y l . Once this is
com plete, a multiway rendezvous on channel b is possible. This involves agents P , Q and R
waiting for each other and once all the of them arrive, agent P transmits the value denoted
by the expression (/ x l j/1) on channel b which is received by agents Q and R and bound to

their internal variable y 2 and y 3 respectively and then P , Q and R proceed to perform their
next actions.

The multiway rendezvous advocated in hopCP is simpler than that in the protocol spec

ification language L O T O S [LOJF88], in the sense that the multiway rendezvous and its
participants can be statically determined by a simple analysis. This is because we do not

16 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

have dynamic process creation in hopCP.

5 Structural D escriptions in hopC P

In the previous section we said that the basic entity being modeled in hopCP is a module
which consists of a set of channel names and a concurrent state-transition system (H F G).
In this section, we will describe ways to specify an interconnection of such modules and a

mechanism for abstraction in hopCP. Interconnection of two modules Mi and M 2 is specified
by a renaming function on the channel names and is expressed by the rename operator.
Abstraction in the sense of controlling the visibility of actions is achieved by the export
operator, connect operator puts together modules (whose interconnection is specified by
the rename operator). After performing basic safety and realizability checks it infers the
composite behavior of the whole system. The behavioral inference is done by composing the
H F G s of the constituent modules by appealing to a procedure called parComp. Details of
p a r C o m p will be described shortly.

6 Formal Sem antics of hopCP

In this section we will present the operational semantics of hopCP in the style advocated
in [Hen90], The semantics presented below serves two objectives: (i) defines an interpreter

for the language, by defining all possible labeled-moves of the underlying state-transition
system , and (ii) defines a compiler for the language, by constructing the underlying H F G
which is the intermediate representation for the hopCP design framework.

The semantics of each major feature of the language is presented separately by specifying
the constituent syntactic categories, abstract syntax and the underlying transition relation.

The organization of the semantic definition is as follows: We use three transition relations

^CA'i ^proc? *beh and two expression evaluation functions = ^ e, and = H e , in the dis
cussions below. The type signatures and formal definition will also be given shortly. — >\,eh
is the top-level transition relation which takes an abstract syntax tree denoting a hopCP

behavioral expression and the associated process and function declarations and returns a

H F G . In doing so, it invokes ■̂ ->pr0c, which incrementally constructs the H F G by enu

merating all possible moves in the H F G . ■— >proc, in turn, appeals to ^— >ca transition
relation to reduce the compound actions. Compound actions in hopCP contain expressions,
which are evaluated by = ^ e and = H e. The semantics will be presented in a bottom-up

fashion. To facilitate reading, we present the entire abstract syntax, list of syntactic cate
gories, type signatures of the various transition relations and helping-functions used in the

HOPCP: LANGUAGE AND SEMANTICS 17

semantic definition in the appendix.

6.1 E xpression L anguage

The expression language underlying hopCP is a first-order functional language with integer

(treated as bitvector) and boolean as the primitive types. Notable omissions with respect to
a standard functional languages are user-defined datatypes and higher-order functions. The

expression language is now defined. •

P rim itiv e S yn tactic C ategories

In the following, V A L is the category of values, V A R of non-boolean variables (e.g. in
teger), B V A R of Boolean variables, A s y n c P o r t s of asynchronous ports, and d of data path
state variables, which are part of V A R . All other categories are explained in the BNF

abstract syntax.

V 6 V A L e <E E X P R
x <E V A R bx <E B V A R
be <E B E X P R F D <E F u n D e c l

vop <E V ectorOp op <E A r i th O p
bop <E BooleanOp F <E F u n N a m e
ap <E A s y n c P o r t s d <E D P S V A R C V A R

A b stract S yn tax o f E xpressions

The (abstract) syntax of function declarations is given by the production rules for F D ,
and that for expressions is given by the rules for e. Expressions (e) can be values, variables,
expressions using a binary operator op, let expressions, primitive function applications, if,
user-defined function applications (F), and an asynchronous port identifier (ap) standing
alone. The remaining expression categories are obvious.

F D

e

be

op

bop

vop

F (X 1,X 2 , . . . , x k) = e I F (x i , x i , . . . , x k) = e , F D '
I , , // - _ , / . t n m .

x \ e op e | let x = e m e | vop[e , e , e)

| if_ be then e else e | F[e\ , e 2 , . . . , ê] {where a r i t y (F) = k) \ ap

bx | T r u e \ F a l se \ be op be \ N o t be \ equalise, e)

+ | — | * | / | r s h i f t | I s h i f t \ index

and | or \ nand \ nor \ exor

update | subvector

18 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

S e m a n tic D o m a in s

Using the above syntactic objects, we will present the semantics of expression evalua
tion in hopCP. Note that we have augmented a standard first-order functional language

with primitive operators to manipulate bitvectors. LocalS tore provides the environment for
the evaluation of expressions involving datapath variables (denoted by D P S V A R) , while

GlobalStore gives the binding of the asynchronous channels (which are treated as variables).
Asynchronous channels can be used in expressions with the restriction that they are used
strictly in the read-only sense. They cannot be bound inside an expression.

cr/ 6 LocalStore = D P S V A R i—► V A L
o'g £ GlobalStore = A s y n c P o r t s i—► V A L

E v a u la tio n S em a n tic s o f E x p ress io n s

==>e and = H e take an expression and its environment, and return a integer (bitvector)
or a boolean, respectively, corresponding to the value of the expression. Their definition is
fairly routine and is om itted to conserve space.

= ^ e: (F u n D e c l x LocalS tore x GlobalStore x E X P R) i—► V A L

==>be' (F u n D e c l x LocalS tore x GlobalStore x B E X P R) i—* Boolean

6 .2 A c t io n s and C o m p o u n d A c tio n s

In this section we will present the syntax and semantics of the various actions used in
hopCP.

A d d it io n a l S y n ta c t ic C a teg o r ie s

Synchronous output ports, synchronous input ports, and compound actions have the fol
lowing syntactic categories:

spo £ S y n c O u tp u t Por t s spi £ S y n c l n p u t Por t s
ca € Com pound Action

A b str a c t S y n ta x o f A c tio n s an d C o m p o u n d A c tio n s

The syntax of actions and compound actions is presented below. A compound action ca is

interpreted as a set of actions, each action being of type a. For example, the compound action

HOPCP: LANGUAGE AND SEMANTICS 19

written syntactically as (p?,g!) denotes the set of actions {p?,g!}, and the compound action
written syntactically as a? denotes the set of actions {a?}, dq denotes receiving a value on
synchronous input port spi, da denotes asserting the value denoted by the expression e on

the synchronous output port spo, and aa denotes asserting the value denoted by expression

e on asynchronous output port ap.

a ::= dq \ da

ca ::= a \ a ,ca

dq ::= s p i l x

da ::= spo\e

aa ap := e

S em an tics o f A ction s and C om pou nd A ction s

The semantics of actions and compound actions is captured through the transition relation

>CA (F u n D e c l x LocalS tore x GlobalStore x C om poundAct ion)

i—* (LocalS tore X GlobalStore)

Here,

Also define

ca+ = ca U {e}.

fl+ = aU {e}

which will be used later.

Next we present the inductive definition of ■— >ca for each action category.

6.2 .1 Syn ch ron ous C om m u n ication A ction s

There are two types of synchronous communication actions in hopCP: actions with value
communication and synchronization and those with only synchronization (no value commu
nication). For each action, we have both the input (query) and output (assertion) counter
parts and we will present separate rules for both. The following are rules for synchronous
communication action without value communication:

(i) Synchronous Input without value communication

(F D , ai, ug, a p i t) ^ CA(ai, ag)

20 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

(ii) Synchronous O u tp u t w ithout value com m unication

{F D , <Ti, <Tg, s p o \) ^ c A (< n ,V g)

Note that these actions do not affect the environment (cri,ag). We retain the labels sprt and

spol to record the fact that these communications were engaged in.

Next we present rules for actions which reflect value communication. Note that only a / is
modified. The effect of a data query sp ilx is to undergo a synchronization with an agent
producing a value v on the channel spi, and modify the localstore oi to reflect this value.
On the other hand, a data assertion spile involves first evaluating the expression e, and then
undergoing a rendezvous with an agent willing to accept a value on the channel spi.

(i) Rule for synchronous value input:

(F D , (ji, (Tg, sp i?x)a- ^ c A (v i [v / x \ , (T a)

(ii) Rule for synchronous value output:

(F D , o i , o g, e) = > e v

(FD,ah<Tg,spo\e)a-^cA(vi,vg)

The synchronous communication actions outlined in this section need the cooperation of
other agents to succeed.

6 .2 .2 A syn ch ron ous C om m u nication A ctio n s .

M o tiv a t io n and D efin it io n : An output asynchronous action in hopCP is written as
aa e. The complementary (i.e. input) action is indicated by the use of the asynchronous

port identifier (e.g. aa in the above example) in hopCP expressions. It denotes the fact that
an asynchronous input is first done through the asynchronous channel, and the value thus

obtained is used in place of the channel name. Assignment actions provide communication
without explicit synchronization. (Synchronization must be indirectly guaranteed.) Asyn
chronous communication in hopCP is characterized by nonblocking senders and nonblocking
receivers. The sending party deposits the value denoted by the expression e on port ap
whenever called upon to do so, and the receiver picks up the value whenever it is asked to.

A sender can also write two values in succession without the receiver reading in between.
The receiver can read the same value twice, without the sender writing in between.

HOPCP: LANGUAGE AND SEMANTICS 21

Naive implementations of the asynchronous communication mechanism can lead to well-
known synchronization problems. For example, since the sender and receiver are not syn
chronized, it is possible to attempt a read while the asynchronous port is being written. In a

naive hardware implementation, this can result in the sampling of a voltage in between that

for logic 0 and that for logic 1, which can lead to metastability. Similarly, since the read and
write may happen in any order, it is possible to read the “old value” from the port, which
could possibly lead to deadlock. .

An asynchronous action (read/write) is said to be safe if all accesses i.e. (read/writes)

to the asynchronous port are serial. Usages of asynchronous communication actions are
checked for safety by the hopCP analyzer. This is done by performing a reachability analysis
on the inferred behavior of the constituent hopCP modules [AG91d]. The inferred behavior
is obtained very efficiently via a tool called parComp which will be discussed in detail later
in this section. In the graph of reachable markings, it is then seen whether the asynchronous
actions can be enabled simultaneously, or not. Basically, asynchronous actions are employed
in hopCP specifications that use synchronous communication actions also. It is these syn
chronous communication actions that help define causal orderings among all the actions in

the specification, and, indirectly, make certain asynchronous actions serial. For example, in
the following specification fragment,

P[x] = (asyncport:=E) -> p! -> ...

I I

Q[y] = p? -> (<guardl using asyncport> -> ...

I <guard2 using asyncport> -> ...)

(* Here, guardl said guard2 must be mutually exclusive said exhaustive. *)

the use of the synchronous communication actions p ! and p? help order the write and read
on asyn cp ort.

If we cannot rule out that the receive will be concurrent with the send , then suitable

circuits (e.g. an arbiter-based circuit such as an A T S module described in [Kel74]) can be
employed. If the inputs to the A T S module are signaled concurrently, the module effectively
serializes the inputs and then takes action based on the result of serialization. Another
precaution to be obeyed is in connection with guards. If an asynchronous port is employed
in guard 0 < i < N — 1 of a choice construct, then the collection of guards g0 through

gN-i must together account for all possible values on the asynchronous port; in other words,
the guards must be exhaustive with respect to the values. Usually this situation arises when

spin-waits are implemented, as shown in the boxed specification fragment that comes next.

22 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

U se s o f A sy n c h r o n o u s C o m m u n ica tio n : Asynchronous communication is useful in sit
uation where explicit synchronization (sender and receiver waiting for each other) is either
awkward or unnecessary. Asynchronous communication can be used in the following scenar

ios which are quite common in hardware description:

• Status Signals: Status signals are typically set once and optionally read many times by

different modules. It is awkward to enforce synchronization on status signals. They

are best modeled as asynchronous actions.

• Busy Waiting: Busy waiting is characterized by a nonblocking sender and a blocking
receiver (waiting fo r a condition). Busy waiting can be implemented in hopCP using
asynchronous actions as shown in the specification fragment, below:

ASYNCPORT

TxRDY? : bit

BEHAVIOR

P n <= (IsTrue TxRDY) -> Q [] '

K n o t (IsTrue TxRDY)) -> P []

END

In state P, the system waits for TxRDY input to become high. Busy waiting inherently
violates safety since there is a possibility of the writer accessing the asynchronous port
while the read is in progress. (Unless this is permitted, the spin-wait condition, once
found to be true, will remain true forever. While one process is spin-waiting, the other
process performs an asynchronous port output, thus causing the spin-wait to exit.) As

mentioned before, the guards must be exhaustive.

R e str ic t io n s : We impose the following restrictions on asynchronous communication in

hopCP, mainly to tune the construct to hardware applications and facilitate a direct circuit
implementation.

1. Only one agent can own an asynchronous channel; i.e., only one agent is allowed to
perform an assignment action (use it in the output sense) on a given asynchronous
channel. However, there could be several agents using the channel in an input sense,
i.e., willing to read the asynchronous port. Just as in the synchronous communication

scenario, the agent which is the sender (assignment) and the agents which are receivers
(input) are statically determined.

HOPCP: LANGUAGE AND SEMANTICS 23

2. The usage of asynchronous actions in choice constructs will be made only under the
condition that the guards are exhaustive, as mentioned above.

3. An asynchronous channel is assumed to have a capacity of one which means that an
asynchronous channel is modeled as a assignable location. Every assignment overwrites

the existing value (much like the assignment in an imperative language).

S em a n tics: The dynamic semantics of the assignment action are given by the following
transition rule

__________(F D , o i , o g,e) = > e v__________

(F D , a x, ag, (ap := e)) - U CA(<rh a9\v l aP\) '

The global store (ag) is being explicitly carried around precisely to capture the asynchronous

value communication via assignment actions. An assignment action merely updates the
corresponding location. Since, crg is shared by the whole system, anyone interested can read
it without undergoing a synchronization (hence the asynchrony). Notice that the “label” of
this transition is e, meaning that there are no observable effects (other than the modification
of ag, of course).

Im p le m e n ta t io n H in ts: If safety is guaranteed, an asynchronous port can be implemented
by a conventional latch. Otherwise it can be implemented using an A T S module (fully

described in [Kel74]). One possible implementation of an A T S module supports the following
operations: write.zero, write.one, and test. It has the property that if more than one of its
commands are requested simultaneously, the module serializes the requests using an internal
arbiter.

6 .2 .3 C o m p o u n d A c tio n

Compound actions introduce a restricted form of parallelism in the form of local fork-
join activity. Synchronization or value communication among the constituent actions of the
compound action is not permitted. The components of a compound action are restricted to
be primitive actions.

The chief motivation for introducing compound actions in hopCP was to have something
analogous to synchronous parallelism which is common in clocked systems. Also, we find
that granularity of a primitive action (data query, data assertion) was too fine to make high-
level modeling too cumbersome. Since a compound action is merely a collection of primitive

which can all be done concurrently, its semantics is captured by by the ^ —*ca relation with
the following additional rules.

(F D , ai, crg, a)-^>cA(cr'i, <?'),

(FD, ai, og, c a) ^ c A (v " , ^")

/ j-i r> / \ \ red u ce (o + ,co +) , , „ ,(F D , a u ag, (a ,ca)) — >Ca (°i U a , , ag U ag)

: Side conditions:

1. The variable assigned by a is not assigned by any other a G ca.

2. The intersection of the domains of a[and <r” is equal to the 0. Therefore the union of
the mappings a\ and a" is a well-defined operation th a t yields a new mapping.

3. The intersection of the domains of a'g and ag is equal to the 0.

Here, reduce(a+,ca+) computes the resultant label of the transition as follows: if there
are non-e actions in either a+, or ca+ , then form a compound action out of the actions in
a+ and ca+, after elim inating all the es; else, return an e. Note, th a t the same environment
(<Ti,<rg) is being distributed to all the components of a compound action which means the
components of the compound action should all be non-interfering; i.e., they should not share
any channels and should do not access (read/w rite) the same asynchronous channels.

6.3 Sequentia l and A ltern ate B ehavior

In this section, the semantics of sequential (~») and alternate (|]) constructs of hopCP will
be presented, (in the textual syntax they are -> and I respectively).

A dd itional S yn tactic C ategories

P D € ProcDecl P 6 ProcNam e
g 6 Guard cproc € ChoiceProc
proc € Proc

The following is the abstract syntax of the alternate and sequential behavior in hopCP.

A bstract Syn tax

One process declaration consist of the process name P followed by formal param eters, the
«*= symbol, and the process body, proc. P D consists of several process declarations. Process
body, proc, is a sequential process consisting of ca, the symbol which denotes sequencing,
and proc, or it is a process call, w ritten P[ej, e2, . . . , em]. A choice process, cproc, is a guard
followed by proc, or several cprocs separated by |. Finally, guards, g, are describ 'd .

24 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

HOPCP: LANGUAGE AND SEMANTICS 25

P D

proc

cproc

9

= (P (d 1, d 2, . . . , d m) «= proc) \ P (d i , d 2, . . . , d m) = p r o c ,P D

= ca proc | P [e i, e2, . . . , em\(where a r i t y (P) = m) | cproc

= g proc | cproc |] cproc

= be | dq \ spi \ be, dq \ be, spi

A d d ition a l Sem an tic D om ain s

The domains of T r a n s i t i o n and S ta t e are now introduced.

T r a n s i t i o n = V +(Sta te) x (C ompound Act ion ® Guard) x V +(Sta te)

S ta t e = P r o c N a m e x LocalStore

A hopCP flow graph is formally defined as a record with two fields:

H F G = (is ta te C V (S t a t e) , trel C V (T r a n s i t i o n))

Given h € H F G , h . is ta te denotes the initial states of h and h. trel its set of transitions.

The semantics of proc is given in terms of the transition relation
functions c s N a m e and add tr2h fg , whose type signatures are:

rproc and helping

(ProcDecl x F u n D e c l x S ta te x Proc x GlobalStore x H F G) i—

(ProcDecl x F u n D e c l x S ta t e x Proc x GlobalStore x H F G)

c s N a m e : Proc i—► P r o c N a m e

a d d t r 2 h fg : H F G i—► (V +(S ta te) x Com pound Act ion x V +(Sta te)) i—► H F G

(add tr2h fg h f g tr) = h f g [(h f g . t r e l l i { t r }) / h f g . t r e l \

Function c s N a m e is any one-to-one mapping from the domain of abstract syntax trees of
hopCP to P r o c N a m e . It is used to merely assign a unique name to each abstract syntax

tree. In our implementation, c s N a m e extracts the “control state name” of the root node of

the abstract syntax tree given to it as an argument. Function a d d tr 2 h fg adds a transition
to a given HFG, returning the resulting HFG.

26 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

6.3.1 R u les for Sequentia l B ehavior

(i) This rule defines the semantics of a process call. It says th a t a process call is processed
similar to how a procedure call is processed in conventional programming languages.
The actual param eters e i , e2, . . . , e m are evaluated (using the evaluation relation for
expressions) and substituted for the formal param eters d\, d2, . . . , dm and the body
of the process declaration proc is invoked. The notation x[newi/o ldi , . . .] says tha t x
m ust be subject to the substitutions indicated in [newi/oldi, . . .] and the 'resu lt must
be returned. Substitution lists always have oldi ^ oldj for i ^ j .

________ (FD, crt, crg, e.) = > e V j , 1 < i < m ________
(.P D , F D , (P“,tri),P[ei, e j , e j , <r„ h f g) - ^ pr,JC

(.P D , F D , (P, a',),proc, <7„ hfg[P/P"])

where

(P[di ,d2, . . . ,dm\ <= proc) e P D

a'i = ai[v i /d i ,v2/d 2, . . . , v m/ d m]

Notice tha t addtr2hfg adds one transition to hfg . This shows how we use the opera
tional rules to capture the compilation of hopCP descriptions into HFGs. In addition
to defining a labeled move, this rule is also showing how HFGs (the result of compiling
hopCP programs) are incrementally built. All uses of addtr2hfg in the rest of the
paper will be to support the compilation.

(ii) This rule captures the sequential progress of the system by the execution of an com
pound action ca.

________ (FD, <T), <7g, ca)-^cA(cr' i,v'g)________
{PD, F D , (P, at), (ca proc), ag, h f g) - ^ proc

(PD, F D , (P' ,a\) ,proc, a'g, (addtr2hfg h f g tr))

where

P = (csN am e proc)

tr = ({(/>, <r,)}. ca, {(/> ',c',)})

HOPCP: LANGUAGE AND SEMANTICS 27

6.3 .2 R u les for Alternate B eh avior

Alternate behavior is expressed in hopCP using guards. It is clear from the abstract syntax
(shown above) that guards could be Boolean expressions, data query (with or without value

communication) or a combination of both. Multiple data queries are not allowed in guards.
Output actions (assertions and assignments) are not allowed in guards, in the current version
of hopCP, either, because of their propensity to induce deadlocks if used carelessly. However,
input asynchronous actions can be used in guards. The semantic rules for alternate behavior
are straightforward: the antecedent of the rule evaluates the guard; if the zth guard succeeds,
the program coming after the zth guard is (which is a proc £ P R O C) is chosen for execution.

The following rules capture the semantics of alternate behavior for the various cases that
arise. Note that evaluation of guards does not change ag global store. Local store a; changes

only if there is a data query involving value communication.

(i) This rule explains how a guard containing only a Boolean expression is handled.

___________(FD,eri,crg,be) = » 6 T ___________
(.P D , F D , (P , a t), (be proc), ag, h f g) *PTOC

(P D , F D , (P ,a i) ,p r o c ,a g, (a d d t r 2 h fg h f g tr))

where

P = (c s N a m e proc)

t r = ({ (P , a ,) } > , { (P > ;) })

(ii) This rule shows how a single input communication action in a guard is handled. Note
that after the communication, the local store is updated.

(P D , F D , (P , a t), (spr tx proc) ,ag, h f g) s- ^ X pT0C

(P D , F D , (P , ai[v/x]),proc, ag, (add tr2h fg h f g tr))

where

P = (c s N a m e proc)

t r = ({(P,(T,)},3pz?a;,{(P',CTJ')})

(iii) This rule shows how a single input synchronization action is handled. Notice that

the stores are not updated. The communication action is recorded as a label of the
transition.

28 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

apt:
(P D , F D , (P, at), {spit proc), ag, h fg) -— *pT0C

(P D , FD ,(P ' ,cr i) ,proc , ag, (a d d t r 2 h fg h f g tr))

where

P = (c s N a m e proc)

t r = ({ (p , ° i) } , s P i 7 , { (p ' '

(iv) This rule specifies how guards containing one Boolean expression followed by an input
communication action are handled. The guard is first checked, and only if found true

will the communication action be tried.

(FD,a i ,(Tg,he) = > t T

(P D , F D , (P, cri), ((be, s p i l x) proc), crg, h f g) — vproc

(P D , F D , (P , oi[v/x]),proc, crg, (add tr2h fg h f g tr))

where

P' = (c s N a m e proc)

tr = ({(P,CT,)},(&e,sp*‘? x) ,{(P ',C T , ') })

(v) This rule is similar to the previous, except that value communication does not occur;
only synchronization occurs.

_________ (F D , ai, crg, be) = r - i T

(P D , F D , (P, ai), ((be, sp i?) proc) ,ag, h f g) s p i :
Tproc

(P D , F D , (P ,a i) ,proc, (jg, (a d d t r 2 h fg h f g tr))

where

P = (c s N a m e proc)

tr = ° i)) , {be, s p i l) , { (P ' ,&[)})

(vi) This shows that if the alternate command has two guarded cprocs, then they can be
tried in any order.

P D , F D , s, cproc, ag, h f g) - ^ proc(P D , F D , s ' , proc, ag, h fg ')
(P D , F D , s , (cproc [cproc), ag, h f g) ^ proc(P D , F D , s ' , proc, ag, h f g ')

(P£>, F D , s, cproc , (jg, h f g) ^ pTOC(P P , F D , s ' , proc, ag, h f g ')
(P D , F D , s , (c p r o c [| cproc), ag, h f g) - ^ pT0C(P D , F D , s ' , proc, agJi f g')

HOPCP: LANGUAGE AND SEMANTICS 29

6.4 Parallel C om position

T he “ ||” operato r specifies concurrent behavior in hopCP. It defines the in teraction of inde

pendently specified hopC P specifications. In this section we will define in teraction of hopC P

specifications by describing a tool called pa r C o m p . p a r C o m p helps inferring th e com posite
behavior of a collection hopC P modules. We will conclude this section by describing some
uses of pa r C o m p .

6.4.1 Synchronization and Behavioral Interaction

hopC P m odules in terac t v ia com m unication actions. T he in teraction could be synchronous
(via handshake or rendezvous) or asynchronous (via global store). As s ta ted earlier, th e la tte r
in teraction is po ten tia lly hazardous and its safety is guaranteed by checking for the serial
usage of all asynchronous channels. Synchronous in teraction is possible when m odules are
willing to perform com plem entary actions (query /assertion) on the sam e channel. W hen the
num ber of m odules willing to perform a query is equal to one, for a given assertion, we have
a two-way rendezvous (sim ilar to synchronous com m unication in CSP or CCS, for exam ple).

W hen th e num ber of m odules willing to perform a query is more than one for a given
assertion, we have a mult iway rendezvous. M ultiway rendezvous is a powerful construct. It

helps express several hardw are-oriented algorithm s very naturally .

Parallel com position is com plicated in hopC P due to the presence of com pound actions.
This is because a proper subset of the compound action set can synchronize. We call this
partial synchronizat ion. In th e next section we will provide the form al definition of p a r C o m p

and illu s tra te it w ith an exam ple.

6.4.2 Formal D efinition of parComp

F irs t we define an auxiliary function con juga te which checks if two p rim itive action

can synchronize or not. Two p rim itive actions synchronize when they are com plem entary
and bo th use th e sam e channel. For exam ple, con juga te (a?x , a\(p + 1)) yields t ru e while

conjugate(a '!x, b\(p + 1)) or co n ju g a te (a ? x ,a ? y) or con juga te (a \x , a\(p + 1)) yields f a l s e .

c o n j u g a te (x , y) = (i s D q u e r y x) A (i s D a s s e r t y) A

(channel(x) = c h a n n e l (y))

V

(i s D q u e r y y) A (i s D a s s e r t x) A

(channe l(x) = c h a n n e l (y))

30 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

where (i s D q u e r y x) and (i s D a s s e r t x) are predicates which check if th e action x is a
d a ta query or a d a ta assertion respectively and channe l (z) ex trac ts th e synchronous port

associated w ith the action z.

In hopC P, parallel com position is com plicated by th e presence of com pound actions. To
assist in th e definition of parallel com position, we define th e following relations, which de
term ine w hether a pair of compound actions a and b are “sy n c h r o n o u s” (a and b com pletely
synchronize) or “a s y n c h r o n o u s ” (a and b do not synchronize a t all): •

s y n c h r o n o u s (a ,b) = x £. a =$> (By £ b . c o n ju g a te (x , y))

A

x £ b =$■ (By £ a . c o n j u g a t e (x , y))

as y n c h r o n o u s (a ,b) = ->(3x £ a A By £ b . c o n j u g a t e (x , y))

p a r C o m p is a function which composes two concurrent s ta te -tran sitio n system s (H F G s).
I t uses auxiliary functions V a l u e c o m m to perform value com m unication, and R e t a i n A s O u t p u t

to fac ilita te m ultiw ay rendezvous. T he auxiliary functions are defined as follows:

R e t a i n A s O u t p u t (a, b) = { x | ((x £ a A (i s D q u e r y x) A (By £ b .c o n ju g a te (x , y)))

\ f (x £ b A (i s D q u e r y x) A (By £ b . c o n j u g a t e (x , y)))) }

V a l u e C o m m takes a pair of s ta tes denoting preconditions of th e transitions being com

posed (s i , s 2)j a pair of c o n ju g a te actions (a, b) and a pair of s ta tes denoting th e postcondi
tions of transitions being com posed (s i , s 2) and updates th e local stores of Sj or s 2 depending
on th e actions a and b. I t is defined recursively as follows:

V a l u e C o m m (s j, s 2, a, b, s 2) =

let

a — { a i , . . . , a n} b — {b\ , . . . ,&„}
•Sl = (Pi ,° i) S2 = (^ 2, 0-2)/
5i = (A 'X)

f
s 2 = (Pi *2)

a,- — Ct?Xt a:

JU11

bi = Cf!ef h = dj ? xj

HOPCP: LANGUAGE AND SEMANTICS 31

in

if ((a,- 6 a) A (i s D q u e r y a,) A (36,- 6 b.conjugate(a{ ,bi)) A (F D 2, cr2, cr52, e,) = > e u,)

then V a l u e C o m m (si, s2, a \ a,-, 6 \ (-P̂ , a'-^Vij X{\), s2)

else if ((aj 6 a) A (i s D a s s e r t aj) A (36j 6 b .conjugate (a j , bj)) A (FD i, cri, cr5l, ej) ==*>

th en V a l u e C o m m (s1? s2, a \ aj , b \ bj, s l5 (Pj,

else (5i ,52) •

end if

end

Basically, function V a l u e C o m m exam ines th e constituen t actions of a and b. I t picks one
action from a and one from b such th a t they are conjugates. It removes them from a and
b, and perform s the in tended com m unication between them symbolically, and updates the
stores appropriately . Function V a l u e C o m m te rm inates when one of th e sets a or b becomes
em pty, or when they cease to have conjugate actions.

Using th e auxiliary functions defined above, (p a r C o m p h f g i h f g 2) = h f g 3 where

hfg-y = { i s t a t e — i s i , t r e l — t r i }

h f g 2 = { i s t a t e = i s 2, t r e l = t r 2)

h f g z — { i s t a t e = i s i \J i s 2, t re l — t r 3}

and t r 3 is inductively defined by the following rules. In defining t r 3, we shall build two
“tem p o rary ” sets of transitions t r x and t r 2 also. Rules for building tr[and t r 2 are also given.
All th ree sets (tr^, t r 2, and t r 3) are inductively defined by the following rules.

(i) : One ru le for building tr[

t 6 tr i
t € tr \

(ii) : A nother rule for build ing t r '2
t € t r 2
t € t r '2

(iii) : One rule for building t r 3: Case “Total Synchronization”

(si, a, Sj) € irj A (s2, b, s 2) 6 t r 2 A synchronous(a , b)

(si U s2, R e t a i n A s O u t p u t (a ,b) , V a l u e C o m m (s \ , s 2, a, 6, s i , s 2)) € t r 3

VENKATESH AKELLA, GANESH GOPALAKRISHNAN

This ru le is applied when th e com pound actions a and b synchronize com pletely.

V a l u e C o m m perform s th e value com m unication across the H F G s . Function R e t a in A s O u t p u t

re ta ins th e o u tp u t coun terparts of the synchronized actions, thus facilita ting m ultiw ay

rendezvous. In o ther words, if pie and p l x synchronize, R e t a i n A s O u t p u t re ta ins pie,

which can thereafter synchronize w ith ano ther p?y, if there happens to be one. (T hat
is, it does not tu rn the com m unication betw een pie and p l x in to an e, as in CCS, which

supports only po in t-to-poin t rendezvous.) .

: T he o ther rule for building t r 3: Case “No Synchronization”

(s i , a , s i) £ t r [A ($2, b, Sj) G t r 2 A a s y n c h r o n o u s (a , b)

{ (s i , a, s i) , (3 2 , 6 , 4) } £ t r 3

This rule is applied when none of th e constituen ts of a and b can synchronize. It
reflects th e fact th a t bo th th e transitions can be done concurrently. N ote th a t we are
not interleaving th e transitions. This rule plays a very key role in keeping th e space
and tim e com plexity of parallel com position linear in te rm s of th e num ber of states.
To give an exam ple of its significance, if H F G hi has m s ta tes and H F G h2 has n

sta tes , and if all th e actions of hi and h2 are different, th en th e to ta l num ber of sta tes
in p a r C o m p (h \ , h2) is 0 (m + n) as opposed to 0 (m x n) which a interleaved rule would
give.

: T he last ru le for building t r \ and t r '2: Case “P artia l Synchronization”

L e t a = ai U a 2 and b = bi U b2
T hen,

((s i , a , Sj) € t r x) A ((^ 2, b, s2) G t r 2) A s y n c h r o n o u s (a i , bi) A a s y n c h r o n o u s (a 2, b2)
p r e f i n e (s i , a , a i , a 2, s i) C tr[A p r e f i n e (s 2, b, bu b2, s'2) C tr'2

where

p r e f i n e (s i , a , a i , a 2, s \) = { (sj, a \ K , , s ^ }) , (s ‘0l, a u s ca i),

(sa2>a 2 , ^ 2) , ({ 5 ^ , 5 ^ 2} , a c, s i) }

p r e f i n e (s i , a, 0 , a2, s i) = { (s i ,a ,s i) }

p r e f i n e (s i , a , a i , % , s \) = { (5 i,a ,5 i)}

This rule handles th e rem aining case which is not handled by (iii) and (iv), i.e., when

com pound actions a and b synchronize partially. T he definition is based on th e in ter

p re ta tio n of com pound actions as sets of prim itive actions.

HOPCP: LANGUAGE AND SEMANTICS 33
s1

Figure 8 : HFG Illu stra ting p r e f i n e

We p a tte rn -m a tch on th e s tru c tu re of th e com pound actions. This p a tte rn m atching
process p artitions a and b to ex trac t com ponents 01,61,02, and 62 which are, th em
selves, com pound actions. T he com ponents th a t synchronize are ai and 61, while the
com ponents th a t do not synchronize are a2 and b2.

T he transitions added to tr [and t r '2 have the crucial p roperty th a t they have one of
th e com pound action sets a^,b\,a2, or b2 labeling them . This way we are in troducing

transitions th a t com pletely synchronize, or do not synchronize. This m akes it possible
for rules (iii) and (iv) to be applicable.

Also notice th a t transitions bearing th e actions o’ and ac are added to tr[and t r 2.

This is to fac ilita te th e partition ing of a and b sets, by appealing to the fact th a t a

com pound action can be refined into its corresponding H F G th a t describes its fork-join

structure, as shown in figure 8 . We in troduce in term ed iate sta tes sj, , , s ’ , and
actions a ' , a c These sta tes and actions help detail th e execution following th e partia l

synchronizations, They also have significance in th e synthesis of circuits from hopC P
specifications [AG91a]. A dditional details are illu stra ted in figure 8 .

To facilita te th e understand ing of the definition of p a r C o m p we present tho following
exam ple: Let, s 1 = (P, erf), s' = (P ' , a f) , s 2 = (Q , a f) , s '2 = (Q ' ,a f),

34 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Total Synchronizat ion will occur, if for exam ple a = (c l x , d \ z) and b = (c \ y , d l u) where
(x ,ii) € V A R , (z , y) € E X P R , (c l , d l) € S y n c I n p u t P o r t s , (c \ , d \) 6 S y n c O u tp u t P o r t s .

T he resu ltan t transition will be ({51, 62}, (c \ y , d \ z), { (P , E f) ,(Q , £ /)}) where

R e t a in A s O u tp u t (a ,b) = (c \ y , d \ z)

((P ' , E f), (Q', £ /)) = V a l u e C o m m (s i , S 2, a , b , s 1 , s 2)

No Synchronizat ion will occur, if for exam ple a = (c l x , d \ z) and b = (f \ y , g l u) where
(x ,u) € V A R , (z , y) € E X P R , (c l , g l) € S y n c I n p u t P o r t s , (f \ , d \) € S y n c O u tp u t P o r t s .

T he resu ltan t transitions will be (s i , a , 4) and {s 2, b , s 2) •

Part ia l Synchronizat ion will occur, if for exam ple a = (c l x , d \ z) and b = (c \ y ,g lu) where
(.x , u) € V A R , (z , y) £ E X P R , (cl , g l) € S y n c I n p u t P o r t s , (c \ , d \) £ S y n c O u tp u t P o r t s .

It is a sim ple exercise to rew rite each transition into th e set of four transitions using the

definition of p r e f i n e above.

6.4.3 U ses of parComp

A tool like p a r C o m p which infers com posite behavior, is extrem ely im p o rtan t in a specifi
cation driven design environm ent. It can be used in th e following ways: We will not go into

th e ir details because they have been published elsewhere.

1 . Verification: It can be used in form al verification w herein th e im plem entation is com
pared against th e inferred behavior (after algebraic sim plification). An exam ple of such
verification effort can be found in [GF91].

2. Realizabili ty Checks: T he absence of deadlock, safe usage of asynchronous com m uni

cation action, and liveness are form ulated on th e H F G corresponding to th e inferred
behavior. M ost of these checks involve doing a reachability analysis on the inferred
behavior [AG91d,].

3. Simulat ion: Inferred behavior can be used to derive a behavioral sim ulator for high-
level specifications as shown in [Man89].

4. High-Level Test Generat ion: In th e past we have shown [AG90] how a behavioral
inference tool can be used in high-level test generation.

6.5 Behavior

Finally, we present the sem antics of the top level syn tactic ob ject in hopC P nam ely
B e h a v i o r .

HOPCP: LANGUAGE AND SEMANTICS 35

beh € B e h a v i o r

A bstract Syntax

T he ab strac t syn tax th a t specifies the behavior of a single hopC P m odule involves the

following BN F rule:

beh ::= P [] | P [v i , v 2, . . . , v m\ \ beh || beh'

T he sem antics of beh is given by the transition relation — >beh whose type signatures are

as follows.

——>beh: (P r o c D e c l x F u n D e c l x B e h a v i o r) i—> (G loba lS to re x H F G)

This s ta tes th a t — ybeh takes th e set of process and function declarations in a hopC P spec
ification, and the behavioral descrip tion beh (in the form of a process call or a parallel
com position of several process calls), and re tu rns an H F G and a global store. The HFG

retu rned represents th e resu lt of compiling proc into an HFG. T he global store re tu rned
represents final global store a tta in ed after running all the process calls, beginning w ith an
em pty global store (i.e. com pletely undefined global store, denoted by 0).

— *bch is defined inductively by th e following rules:

(i) This ru le captures the sem antics of sequential hopC P specifications w ith in itia l d a ta p
a th s ta te being em pty. In o ther words, we are defining the behavior of P [].

(P D , F D , (P , a i) , p r o c , a ° , h f g) ^ - > proc(P D , F D , (P ' , a' ,) ,proc , a g, h fg ')

(P D , F D , P []) ^ beh (ag, h f g)

where

= 0

(P\ \ proc) € P D

u\ = 0
h f g = { i s t a t e = {(P, a /)} , t r e l = 0}

This rule first appeals to the — >Proc relation and obtains the final global store a g and
final H FG hfg ' ob tained by “running” P []. T he final H FG is bu ilt up, action by
action, from th e in itia l H FG , h f g , given to th e rule.

A d d ition a l S yn tactic C ategories

(ii) This ru le cap tures th e sem antics of sequential hopC P specifications w ith non-em pty

in itia l d a ta p a th sta te .

(P D , F D , (P , <7/), proc, <7°, h f g) ^ + proc(P D , F D , (P ' , crj), proc , crg, h fg ')

(P D , F D , P [v beh (v g, h f g ')

where

<Tfl° = 0

(P [d 1 , d 2, . . . , d m\ <= proc) € P D ,

ai — {c/i i-» v i , d 2 v 2, . . . , d m i-» vm}

h f g = {*s/a<e = {(P , <7/)}, <reJ = 0}

(iii) This rule cap tures th e sem antics of concurrent hopC P specifications by appealing to
p a r C o m p to im plem ent parallel com position. T he HFGs obta ined by com piling beh

and beh' are first ob ta ined (h f g and hfg' respectively). T he global stores obtained by
“runn ing” beh and beh' are also obtained. T hen, the global stores are un ited , banking
on th e assurance th a t there will be no dom ain conflicts (only one process owns every

. global p o rt). Finally, th e HFGs are sub ject to p a r C o m p to ob ta in the resu ltan t HFG.

((P D , F D , beh) ^ beh (ag, h f g)) , ((P D , F D , beh') ^ beh (a'g, h fg '))

(P D , F D , (beh || beh')) ^*beh, (&g U cr'g, (p a r C o m p h f g h fg '))

7 Sem antics o f Structural O perators

r e n a m e , connect, and export are the s tru c tu ra l operators in hopCP. S tru c tu ra l operators
help specify an interconnection of hopC P modules. P O R T and M O D U L E are defined as
follows and denote th e dom ain of all com m unication channels in hopC P and m odules in
hopC P

P O R T = S y n c O u t p u t P o r t s ® S y n c l n p u t P o r t s ® A s y n c P o r t s

M O D U L E = {behavior C H F G , p o r t s C V + (P O R T) }

Let m be a hopC P m odule, i.e. m £ M O D U L E . We define selectors m .p and m.b to

denote the set of ports used in m , and the H F G denoting the behavior of m , respectively.

r e n a m e does alpha conversion of channel nam es (specified by /) to facilita te in terconnec

tion i.e. channels w ith sam e nam es and com plem entary direction are assum ed to be

3 6 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

electrically connected. Let m i £ M O D U L E and / : P O R T •—> P O R T denote a bi-
jection , then r e n a m e : M O D U L E •—> P O R T •—> P O R T •—> M O D U L E is defined as

follows:
r e n a m e m i / = {&e/iamor = m \ .b ,p o r t s — (m ap / m i.p)}

Let m i , m 2 £ M O D U L E , connect : M O D U L E 1—> M O D U L E •—> M O D U L E , re tu rn s the
com posite hopC P m odule denoted by interconnection of separately specified modules
m i and m 2 a fte r perform ing s ta tic checks like unconnected ports, and illegal connec

tions etc.

connect m x m 2 = {beh av ior — (p a r C o m p m x.b m 2.&),por ts = m \ . p U m 2.p}

N ote, th a t connect sim ply invokes p a r C o m p to infer th e composite behavior.

expor t : M O D U L E 1—> P O R T •—> M O D U L E , removes a set of po rts p 6 P O R T f rom
th e sort of a m odule m i £ M O D U L E , so th a t th e actions on those ports cannot be

shared by other modules when assem bled together by connect operator. T he m odule
m i though can still engage in actions involving ports in p.

expor t m i p = {behav ior = m \ .b ,p o r t s = [m \ .p) \ p]

8 Im plem entation

T he design environm ent centered around hopC P (and shown in figure 1) is being im
p lem ented in S tandard ML of New Jersey. T he im plem entation has been partitioned into
four independent tasks which are linked by H F G which is th e com m on in term ed iate form
for hopC P specifications. F irs t, hopC P tex tua l syntax is parsed using SML yacc/lex and
com piled in to a SML d a ta s tru c tu re denoting H F G . This is a d irect im plem entation of
th e transition rules described in the previous section. T he algorithm p a r C o m p has been
im plem ented which composes H F G s and re tu rns a new H F G . We have also im plem ented a

compiled-code concurrent functional s imulator called CFSIM for hopC P specifications which
involves translat ing H F G s in to CML source code in such way th a t th e sem antics of hopCP

outlined in th e previous sections are preserved. T he details of th e sim ulato r will be described
in [AG91b]. CML is an extension to SML to support synchronous m essage passing and is
described in [Rep91].

Several realistic exam ples including Intel 8251 program m able com m unication interface

chip have been specified in hopC P and sim ulated for functional correctness. We specified

th e In tel 8251 has a collection of four concurrent processes and inferred its behavior using
p a r C o m p qu ite efficiently. T he details are presented in [AG91c].

HOPCP: LANGUAGE AND SEMANTICS 37

38 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

9 C onclusions and Future Work

hopC P was developed based on w hat we felt were some of th e im po rtan t features to be

present in an HDL and its support system . T he com bination of features th a t hopC P and its

im plem entation curren tly offer are:

• a sim ple HDL, a com plete operational sem antics th a t describes th e hopC P in terp re te r
and th e com piler th a t generates hopC P flow graphs; •

• addition of asynchronous ports to a message passing language, and a sem antic charac
te rization of asynchronous ports; a catalogue of uses of asynchronous ports;

• com pound actions, and form al characterization of partial synchronizat ion ;

• functional no ta tion to m inim ize the effort of d a ta flow analysis and also for clearly
specifying com putations;

• an im plem entation using S tandard ML, following a com piled-code approach; this ap
proach enforces M L’s strong type-checking on hopC P descriptions also, thereby helping
avoid m any bothersom e errors;

• concurrency sim ulator using C oncurrent ML, th a t supports strong type-checking, and
th e sim ulation of concurrency;

• th e ability to sim ulate asynchronous descriptions using asynchronous “te s te r” pro

cesses, instead of forcing the designer to pore over waveforms (which are of even lesser
value for asynchronous designs);

• parC om p, th a t infers succinct behavioral descriptions, re ta in ing concurrency (i.e., not
in terleaving), thereby not suffering from com binatorial explosion of possible in terleav
ings;

• s ta tic analysis procedures th a t help detect w hether a pair of actions are serial or not,
thereby supporting efficient com pilation of asynchronous ports and also the choice
construct.

P relim inary results indicate th a t the above com bination of features are quite useful in devel

oping and debugging th e design specification as well as design refinem ents of large applica

tion specific ICs. Of course, we are aware of the omission of m any o ther useful features from

hopC P; for exam ple: param eterized m odules, proper exception handling, and the incorpo

ration of real-tim e constrain ts. (We are working on some of these omissions, bu t clearly it
is im possible to have every construct im aginable and have a sem antically trac tab le HDL.)

HOPCP: LANGUAGE AND SEMANTICS 39

T he next m ajo r task we shall undertake will be hierarchical action refinement , described
in [AG92, AG91a]. One of th e problem s w ith m ost existing high level synthesis system s
is th a t they give very little clues on how they operate. This m akes it nearly im possible to

understand , evaluate, and prove correct the optim izations they m ake to u ser’s source descrip
tions. We plan to rectify some of these problem s by developing a ru le based com pilation
system , where th e rules encapsulate how t ime is hierarchically refined, and how resources
are incremental ly allocated. ,

F u tu re m odifications of parC om p will help it detect sim ple errors (e.g. dead sta tes, and
loops of infinite cha tte rs). It is a very easy m a tte r to m odify CFSIM to incorporate checks for
real-tim e constra in t violations, thanks to th e features offered by CML; this will be done in the
near fu ture. O ther rem aining work includes the developm ent of a synchronous com pilation

system (actually using an available system such as O lym pus [Ku91]) and th e investigation
of m ixed synchronous/asynchronous com pilation. Effort is also underw ay to specify several
large designs, including the Roll Back Chip [GF91].

For inform ation on the availability of the hopC P code for experim ental assessm ent, contact
a k e l la Q c s .U ta h . edu.

R eferences

[AG90] Venkatesh Akella and G anesh G opalakrishnan. High Level T est G eneration via

Process C om position. In Designing Correct Circuits, Oxford, 1990, pages 99-119.
Springer Verlag, 1990. Proceedings of the D C C Workshop, Oxford, September,

1990, published in Spr inger ’s new series ‘Workshops in C om put in g ’.

[AG91a] V enkatesh A kella and G anesh G opalakrishnan. H ierarchical A ction Refinem ent:
A M ethodology for Com piling A synchronous C ircuits from a C oncurrent HDL.
In Proceedings of the Tenth Internat ional Symposium on Computer Hardware D e

scription Languages and their Appl icat ions, Marseil le , France, A pril 1991.

[AG9lb] Venkatesh Akella and Ganesh G opalakrisnan. CFSIM : A C om piled-Code Con

curren t Functional S im ulator for VLSI System s. Technical report, D epartm ent
of C om puter Science, U niversity of U tah , 1991. In preparation ; available upon
request from the authors.

[AG91c] Venkatesh A kella and G anesh G opalakrisnan. Specification and V alidation of a

USART in hopC P. Technical report, D epartm en t of C om puter Science, U niversity
of U tah , 1991. In preparation; available upon request from th e authors.

[AG91d] Venkatesh Akella and G anesh G opalakrisnan. S ta tic A nalysis Techniques for the
Synthesis of Efficient Asynchronous C ircuits. Technical R eport UUCS-91-018,
D epartm en t of C om puter Science, U niversity of U tah , O ctober 1991.

[AG92] V enkatesh Akella and G anesh G opalakrishnan. From Process-O riented Functional
Specifications to Efficient Asynchronous C ircuits. In To Appear, In Fifth Inter

national Conference on VLSI, Bangalore, India, January 1992.

[BS89] Erik B runvand and R obert F. Sproull. T ransla ting C oncurrent C om m unicat
ing P rogram s into D elay-Insensitive C ircuits. In International Conference on

Com puter-aided Design, I C C A D 89, A pril 1989.

[Cha84] D aniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD
thesis, D epartm en t of C om puter Science, S tanford U niversity, O ctober 1984.

[Cha87] A rthu r C harlesw orth. T he M ultiway Rendezvous. A C M Transactions on P ro

gramm ing Languages and System s, 9(3) :350—366, Ju ly 1987.

[CPS89] Ranee C leveland, Joachim Parrow , and B ernhard Steffen. T he concurrency work

bench: A sem antics based tood for the verification of concurrent system s. Tech
nical R eport ECS-LFCS-89-83, Laboratory for Foundations of C om puter Science,
Univ of E dinburgh, A ugust 1989.

[Dil89] David L. Dill. Trace Theory fo r A u tom atic Hierarchical Verification o f Speed-

independent Circuits. M IT Press, 1989. An A C M Distinguished Dissertation.

[Ebe89] Jo C. Ebergen. Translating Programs into Delay Insensitive Circuits. C entre for
M athem atics and C om puter Science, A m sterdam , 1989. C W I Tract 56.

[GF91] G anesh G opalakrishnan and R ichard Fujim oto. Design and verification of the

rollback chip using hop: A case study of form al m ethods applied to hardw are
design. Technical R eport UU-CS-TR-91-015, U niversity of U tah , D epartm en t of
C om puter Science, 1991.

[GFAM89] G anesh C. G opalakrishnan, R ichard Fujim oto, Venkatesh Akella, and N arayana
M ani. H O P: A process m odel for synchronous hardw are, sem antics, and exper
im ents in process com position. Integration: The VLSI Journal, pages 209-247,
A ugust 1989.

[GJ90] G anesh G opalakrishnan and P rab h a t Jain . Some R ecent A synchronous System

Design M ethodologies. Technical R eport UU-CS-TR-90-016, U niversity of U tah,
D epartm en t of C om puter Science, 1990.

4 0 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

HOPCP: LANGUAGE AND SEMANTICS 41

[Hen90] M atthew Hennessy. The Semantics of Programming Languages: An Elementary

Introduct ion using Structural Operat ional Semantics. John W iley &; Sons, 1990.

[Hoa85] C. A. R. Hoare. Communicat ing Sequential Processes. P rentice-H all, Englewood

Cliffs, New Jersey, 1985.

[Joh84] Steven D. Johnson. Synthesis of Digi tal Designs f rom Recursion Equations. T he

M IT Press, 1984. An ACM D istinguished D issertation-1983. •

[Kel74] R obert M. Keller. Towards a theory of universal speed-independent modules.

IE E E Transactions on Computers , C -23(l):21-33, Jan u ary 1974.

[KM90] D avid Ku and Giovanni De M icheli. H ardwareC - A Language for H ardw are
Design, Version 2.0. Technical R eport CSL-TR-90-419, C om puter Science Labo
ratory , S tanford University, April 1990.

[Ku91] D avid Ku. Constrained Synthesis and Optimizat ion o f Digi tal Integrated Circuits

f rom Behavioral Specifications. PhD thesis, D epartm en t of C om puter Science,
S tanford University, Ju n e 1991.

[LOJF88] L. Logrippo, A. O baid, J .P .B riand , and M .C. Fehri. An In te rp re te r for LO TO S,
a Specification Language for D istribu ted System s. Software— Practice and Expe

rience , 18(4):365—385, April 1988.

[Man89] N arayana M ani. B ehavioral S im ulation from High Level Specifications. M aster’s
thesis, D ept, of C om puter Science, U niversity of U tah , Salt Lake City, UT 84112,
M ay 1989.

[Mar89] A lain J. M artin . P rogram m ing in VLSI: F rom C om m unicating Processes to Delay-
Insensitive C ircuits. Technical R eport Caltech-CS-TR-89-1, D epartm en t of Com
p u te r Science, California In s titu te of Technology, 1989.

[May90] David May. Com piling Occam into Silicon. In C. A. R. Hoare, editor, Develop

ments in Concurrency and Communicat ion. Addison-W esley, 1990.

[MC80] C. A. M ead and L. Conway. An Introduct ion to VLSI Systems. Addison Wesley,
1980. Chapter 7, entitled “Sys tem T iming”.

[PL91] Ian Page and W ayne Luk. Com piling Occam into F ield-P rogram m able G ate A r

rays. In Internat ional Workshop on Field Programmable Logic and Applicat ions,

Septem ber 1991. September 4-6, 1991, Oxford University, UK.

42 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

[Rep91] John H. Reppy. CML: A H igher-order C oncurrent Language. In A C M SIG-

P L A N ’91 Conference on Programming Language Design and Implementa t ion ,

Ju n e 1991.

[RM89] Robin M ilber. Communicat ion and Concurrency. P rentice-H all In ternational,

Englewood Cliffs, New Jersey, 1989.

[She85] M ary Sheeran. Design of regular hardw are structu res using higher order func
tions. In Proceedings of the Functional Programming and Computer Architecture

Conference. Springer-Verlag, LNCS 201, Septem ber 1985. Nancy, France.

[SST90] E liezer S ternheim , R ajv ir Singh, and Y atin Trivedi. Digital Design with Verilog

HDL. A u to m ata Publishing Company, C upertino, CA, 95014, 1990. ISBN 0

9627488-0-3.

[Sut89] Ivan Sutherland . M icropipelines. Communicat ions o f the ACM , June 1989. The

1988 A C M Turing Award Lecture.

[TLW+90] D. E. Thom as, E. D. Lagnese, R. A. W alker, J . A. N estor, J . V. R ajan , and
R. L. B lackburn. Algori thmic and Register-Transfer Level Synthesis: The System

A rchi tec t ’s Workbench. K luwer Academ ic Publishers, Boston, 1990.

[VHD85] VHDL Language Reference M anual, A ugust 1985. Intermetr ics Report IR-MD-

045-2; See also I E E E Design and Test, Apr i l 1986.

10 A ppendix

Syntactic Categories

V € V A L d e D P S V A R
e € E X P R P e P r o c N a m e
F D e F u n D e c l P D <E P r o c D e c l
beh e B e h a v i o r proc e P R O C
apo e A s y n c P o r t s ca e C om pound Ac t ion

9 e G u a rd cproc e C h o ic e P r o c
spo <E S y n c O u tp u t P o r t s spi <E S y n c l n p u t P o r t s
X e V A R bx e B V A R
vop e V ec torOp op e A r i t h O p
bop € Boo leanO p F e F u n N a m e
be e B E X P R

HOPCP: LANGUAGE AND SEMANTICS

Sem antic D om ains

<?i € L oc a lS to re = D P S V A R (-► V A L

Og € G lobalS tore = A s y n c O u t p u t P o r t s i—► V A L

T r a n s i t i o n = V + (S ta t e) x C o m pou n dA c t ion © G u a r d x V + (S ta t e)

S t a t e = P r o c N a m e x L ocalS tore

P O R T = S y n c O u t p u t P o r t s © S y n c l n p u t P o r t s © A s y n c P o r t s

H F G = { i s t a t e C V (S T A T E) , t r e l C T R A N S I T I O N }

M O D U L E = {behavior C H F G , p o r t s C ^ +(P O i?T)}

A bstract Syntax

: = p [] 1 P [v i , v 2, . . . , v m] \ b e h \ \ b e h '

P D : — P (d i , d 2,. . . , d m) <= proc \ P (d i , d 2, . . . , d m) = p roc , P D '

F D : = F (x i, x 2, . . . , x k) = e | F (x 1 , x 2, . . . , x k) = e, F D '

proc — ca-^+proc \ P [e i , e 2, . . . , e m](w here a r i t y (P) = m) \ cproc

cproc — g -N.+ proc | cproc |] cproc

g = be \ dq \ spi \ be, dq \ be, spi

a - dq | da \ aa \ spi \ spo

ca =
. t

a \ a ,ca

e = v | x | apo | e op e \ le t x — e in e \ vop(e , e , e)

be then e e lse e |F [e!.e -> eu](wh,ere a r i t y (F) = k)

be bx | T r u e \ F a l s e \ be op be \ N o t be \ equa l (e , e)

op := + 1 — 1 * 1 / 1 r s h i f t | I s h i f t | index

bop := and | or n and \ nor \ exor

vop := update | subvector

Type Signatures of Transition R elations

*proc ’ (P r o c D e c l x F u n D e c l x S 'iaie x P ro c x G lobalS tore x H F G)

VENKATESH AKELLA, GANESH GOPALAKRISHNAN

~>CA

*beh

(P r o c D e c l x F u n D e c l x S t a t e x P r o c x G lobalS tore x H F G)

(F u n D e c l x Loca lS to re x G loba lS tore x C om pou n dA c t ion)

t—► (L oca lS to re x GlobalStore)

(P r o c D e c l x F u n D e c l x B e h a v i o r) t—► (G loba lS tore x H F G)

T ype Signatures of A uxiliary Functions

c s N a m e

p a r C o m p

a d d t r 2 h f g

P r o c ► P r o c N a m e

H F G H F G H F G '

H F G ► (V + (S ta t e) x C ompound Act ion x V + (S ta t e)) ► H F G

Type Signatures of Structural O perators

r e n a m e

connect

expor t

M O D U L E M O D U L E

M O D U L E M O D U L E h-> M O D U L E

M O D U L E M O D U L E

